cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A020885 Ordered areas (divided by 6) of primitive Pythagorean triangles (with multiple entries).

Original entry on oeis.org

1, 5, 10, 14, 30, 35, 35, 55, 84, 91, 105, 140, 154, 165, 204, 220, 231, 260, 285, 286, 385, 390, 429, 455, 455, 506, 595, 650, 680, 715, 770, 819, 836, 935, 969, 1015, 1105, 1190, 1240, 1309, 1326, 1330, 1330, 1495, 1496, 1615, 1729, 1771, 1785, 1820, 1925
Offset: 1

Views

Author

Keywords

Comments

Since squares are 0 or 1 under both mod 3 and mod 4, for the Pythagorean equation A^2 + B^2 = C^2 to hold, each of 3 and 4 divides either of leg A or leg B, so that area A*B/2 is divisible by 3*4/2 = 6. - Lekraj Beedassy, Apr 30 2004
From Wolfdieter Lang, Jun 14 2015: (Start)
This sequence gives the area/6 (in some squared length unit) of primitive Pythagorean triangles with multiplicities modulo leg exchange. See the example.
This sequence also gives Fibonacci's congruous numbers divided by 24, with multiplicities and ordered nondecreasingly. See A258150.
(End)
It appears that this sequence gives the list of dimensions of irreducible unitary representations of the Lie group SO(5). - Antoine Bourget, Mar 30 2022

Examples

			a(6) = a(7) = 35 from the two Pythagorean triangles (A,B,C) = (21, 20, 29)  and (35, 12, 37) with area 210. Triangles (20, 21, 29) and (12, 35, 37) are not counted (leg exchange). - _Wolfdieter Lang_, Jun 14 2015
		

Crossrefs

Programs

  • Mathematica
    Take[Sort[(Times@@#)/12&/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@ Select[ Subsets[Range[1,41,2],{2}],GCD@@#==1&])],60] (* Harvey P. Dale, Feb 27 2012 *)

Formula

a(n) = A024406(n)/6.

Extensions

Extended and corrected by David W. Wilson

A155171 Numbers p such that if q = p+1 then (a = q^2-p^2, b = 2*p*q, c = q^2 + p^2) is a primitive Pythagorean triple with s-1 and s+1 primes, where s = a+b+c.

Original entry on oeis.org

1, 2, 7, 10, 20, 29, 44, 50, 65, 70, 76, 77, 101, 104, 107, 115, 154, 175, 197, 202, 226, 227, 247, 275, 371, 380, 412, 457, 490, 500, 574, 596, 647, 671, 682, 710, 764, 829, 926, 1052, 1085, 1102, 1127, 1186, 1204, 1205, 1225, 1256, 1280, 1324, 1325, 1331
Offset: 1

Views

Author

Keywords

Examples

			p=1,q=2,a=3,b=4,c=5,s=12-+1 primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,n]],{n,8!}];lst

Extensions

Definition edited by N. J. A. Sloane, Jul 19 2022

A155173 Short leg A of primitive Pythagorean triangles such that perimeter s is average of twin prime pairs, q=p+1, A=q^2-p^2, C=q^2+p^2, B=2*p*q, s=A+B+C; s -/+ 1 are primes.

Original entry on oeis.org

3, 5, 15, 21, 41, 59, 89, 101, 131, 141, 153, 155, 203, 209, 215, 231, 309, 351, 395, 405, 453, 455, 495, 551, 743, 761, 825, 915, 981, 1001, 1149, 1193, 1295, 1343, 1365, 1421, 1529, 1659, 1853, 2105, 2171, 2205, 2255, 2373, 2409, 2411, 2451, 2513, 2561, 2649
Offset: 1

Views

Author

Keywords

Comments

With p=1, then q=2,a=3,b=4,c=5, and s=12-+1 (11, 13) both primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,a]],{n,8!}];lst

Extensions

Name edited by Zak Seidov, Mar 21 2014

A111284 Number of permutations of [n] avoiding the patterns {2143, 2341, 2413, 2431, 3142, 3241, 3412, 3421, 4123, 4213, 4231, 4321, 4132, 4312}; number of strong sorting classes based on 2143.

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1

Views

Author

Len Smiley, Nov 01 2005

Keywords

Comments

This sequence might also be called "The Non-Pythagorean integers" since no primitive Pythagorean triangle (PPT) exists containing them. Numbers of the form 4n-2 cannot be a leg or hypotenuse of PPT [a,b,c]. This excludes all even members of the present sequence. Integers 1 and zero are excluded because they form a 'degenerate triangle' with angles = 0. Compare A125667. - H. Lee Price, Feb 02 2007
Besides the first term this sequence is the denominator of Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 14 2011

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Cf. A125667. Complement of the union of {1}, A020882, A020883 and A020884.

Programs

Formula

a(n) = 4*n-6, n>=2.
a(n) = A016825(n-2), n>1. - R. J. Mathar, Aug 18 2008
G.f.: x(1+3x^2)/(1-x)^2. - R. J. Mathar, Nov 10 2008
a(n^2 - 2n + 3)/2 = Sum_{i=1..n} a(i). - Ivan N. Ianakiev, Apr 24 2013
a(n) = 2*a(n-1) - a(n-2), n>3. - Rick L. Shepherd, Jul 06 2017
a(n) = |A161718(n-1)| = (-1)^(n-1)*A161718(n-1), n>0. - Rick L. Shepherd, Jul 06 2017
E.g.f.: 3*(x + 2) + exp(x)*(4*x - 6). - Stefano Spezia, Feb 02 2023

A024359 Number of primitive Pythagorean triangles with short leg n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 1, 3, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 1, 3, 2, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A takes value n.
Number of times n occurs in A020884.
a(A139544(n)) = 0; a(A024352(n)) > 0. - Reinhard Zumkeller, Nov 09 2012

Crossrefs

Cf. A020884, A024352, A024360, A024361, A132404 (where records occur), A139544.

Programs

  • Haskell
    a024359_list = f 0 1 a020884_list where
       f c u vs'@(v:vs) | u == v = f (c + 1) u vs
                        | u /= v = c : f 0 (u + 1) vs'
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; Table[solns[n], {n, 100}]
    (* Second program: *)
    a[n_] := Module[{s = 0, b, c, d, g}, Do[g = Quotient[n^2, d]; If[d <= g && Mod[d+g, 2] == 0, c = Quotient[d+g, 2]; b = g-c; If[n < b && GCD[b, c] == 1, s++]], {d, Divisors[n^2]}]; s]; Array[a, 100] (* Jean-François Alcover, Apr 27 2019, from PARI *)
  • PARI
    nppt(a) = {
      my(s=0, b, c, d, g);
      fordiv(a^2, d,
        g=a^2\d;
        if(d<=g && (d+g)%2==0,
          c=(d+g)\2; b=g-c;
          if(aColin Barker, Oct 25 2015

Formula

a(n) = A024361(n) - A024360(n). - Ray Chandler, Feb 03 2020

A155174 Long leg B of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

4, 12, 112, 220, 840, 1740, 3960, 5100, 8580, 9940, 11704, 12012, 20604, 21840, 23112, 26680, 47740, 61600, 78012, 82012, 102604, 103512, 122512, 151800, 276024, 289560, 340312, 418612, 481180, 501000, 660100, 711624, 838512, 901824, 931612
Offset: 1

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,b]],{n,8!}];lst

A063011 Ordered products of the sides of primitive Pythagorean triangles.

Original entry on oeis.org

60, 780, 2040, 4200, 12180, 14760, 15540, 40260, 65520, 66780, 92820, 120120, 189840, 192720, 199980, 235620, 277680, 354960, 453960, 497640, 595140, 619020, 643500, 1021020, 1063860, 1075620, 1265880, 1484340, 1609080, 1761540
Offset: 1

Author

Henry Bottomley, Jul 26 2001

Keywords

Comments

It is an open question whether any two distinct Pythagorean triples can have the same product of their sides.

Examples

			a(1)=3*4*5=60; a(2)=5*12*13=780 (rather than 6*8*10=480, which would not be primitive).
		

Programs

  • Mathematica
    k=17000000;lst={};Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]]&&GCD[a,b,c]==1,If[a>=b,Break[]];x=a*b*c;If[x<=k,AppendTo[lst,x]]],{b,c-1,4,-1}],{c,5,700,1}];Union@lst (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009 *)
    With[{nn=50},Take[(Times@@#)Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@ ({Times@@#, (Last[#]^2-First[#]^2)/2}&/@(Select[Subsets[Range[1,nn+1,2],{2}],GCD@@#==1&]))]//Union,nn]] (* Harvey P. Dale, Jun 08 2018 *)

A081874 Ordered odd short legs of primitive Pythagorean triangles.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 65, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 83, 85, 85, 87, 87, 89, 91, 93, 93, 95, 95, 97, 99, 101, 103, 105, 105, 105, 107, 109, 111
Offset: 1

Author

Lekraj Beedassy, Apr 23 2003

Keywords

Comments

Sequence comprises all odd values greater than 1. In particular, primitive Pythagorean triangles with consecutive longer sides have long and short legs 2n(n+1) {A046092(n)} and 2n+1 {A005408(n)} respectively.

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Oct 29 2003

A155175 Hypotenuse C of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

5, 13, 113, 221, 841, 1741, 3961, 5101, 8581, 9941, 11705, 12013, 20605, 21841, 23113, 26681, 47741, 61601, 78013, 82013, 102605, 103513, 122513, 151801, 276025, 289561, 340313, 418613, 481181, 501001, 660101, 711625, 838513, 901825, 931613
Offset: 1

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,c]],{n,8!}];lst

A235598 Begin with a(0) = 3. Let a(n) for n > 0 be the smallest positive integer not yet in the sequence which forms part of a Pythagorean triple when paired with a(n-1).

Original entry on oeis.org

3, 4, 5, 12, 9, 15, 8, 6, 10, 24, 7, 25, 20, 16, 30, 18, 80, 39, 36, 27, 45, 28, 21, 29, 420, 65, 33, 44, 55, 48, 14, 50, 40, 32, 60, 11, 61, 1860, 341, 541, 146340, 15447, 20596, 25745, 32208, 2540, 1524, 635, 381, 508, 16125, 4515, 936, 75, 72, 54, 90, 56
Offset: 0

Author

Jack Brennen, Dec 26 2013

Keywords

Comments

Is the sequence infinite? Can it "paint itself into a corner" at any point? Note that picking any starting point >= 5 seems to lead to a finite sequence ending in 5,3,4. For example, starting with 6 we get 6,8,10,24,7,25,15,9,12,5,3,4, stop (A235599).
By beginning with 3 or 4, we make sure that the 5,3,4 dead-end is never available.
If infinite, is it a permutation of the integers >= 3? This seems likely. Proving it doesn't seem easy though.
Comment from Jim Nastos, Dec 30 2013: Your question about whether the sequence can 'paint itself into a corner' is essentially asking if the Pythagorean graph has a Hamiltonian path. As far as I know, the questions in the Cooper-Poirel paper (see link) are still unanswered. They ask whether the graph is k-colorable with a finite k, or whether it is even connected (sort of equivalent to your question of whether it is a permutation of the integers >=3).
Lars Blomberg has computed the sequence out to 3 million terms without finding a dead end.
Position of k>2: 0, 1, 2, 7, 10, 6, 4, 8, 35, 3, 67, 30, 5, 13, 89, 15, 143, 12, 22, 118, 385, 9, 11, ..., see A236243. - Robert G. Wilson v, Jan 17 2014

Programs

Previous Showing 11-20 of 44 results. Next