cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 93 results. Next

A345082 Number of elements of order n in R/Z X Z/2Z.

Original entry on oeis.org

1, 3, 2, 4, 4, 6, 6, 8, 6, 12, 10, 8, 12, 18, 8, 16, 16, 18, 18, 16, 12, 30, 22, 16, 20, 36, 18, 24, 28, 24, 30, 32, 20, 48, 24, 24, 36, 54, 24, 32, 40, 36, 42, 40, 24, 66, 46, 32, 42, 60, 32, 48, 52, 54, 40, 48, 36, 84, 58, 32, 60, 90, 36, 64, 48, 60, 66, 64
Offset: 1

Views

Author

Michel Marcus, Jul 30 2021

Keywords

Comments

From Peter Bala, Dec 30 2023: (Start)
Denoted phi_2(n) in van der Kamp.
The number of solutions of the congruence x*y == 2 (mod n), 1 <= x, y <= n.
Can be regarded as a generalization of Euler's totient function phi(n) = Sum_{k = 1..n, gcd(k,n) = 1} gcd(k,n) since a(n) = Sum_{k = 1..n, gcd(k,n) divides 2} gcd(k,n). (End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add(d*phi(n/d), d in divisors(igcd(2, n))), n = 1..70); # Peter Bala, Dec 30 2023
  • Mathematica
    Table[If[OddQ[n],EulerPhi[n],If[Mod[n,4]==0,2EulerPhi[n],2EulerPhi[n]+EulerPhi[n/2]]],{n,68}] (* Stefano Spezia, Jul 30 2021 *)
  • PARI
    a(n) = if (n%2, eulerphi(n), if (n%4, 2*eulerphi(n) + eulerphi(n/2), 2*eulerphi(n)));
    
  • Python
    from sympy import totient as phi
    def a(n): return phi(n) if n%2 else 2*phi(n)+phi(n//2) if n%4 else 2*phi(n)
    print([a(n) for n in range(1, 69)]) # Michael S. Branicky, Jul 30 2021

Formula

a(n) = phi(n) if n is odd; 2*phi(n) if n == 0 (mod 4); 2*phi(n) + phi(n/2) if n == 2 (mod 4).
From Ridouane Oudra, Oct 17 2021: (Start)
a(n) = A000010(n) + A319998(n);
a(n) = 2*A000010(n) - A319997(n);
a(n) = Sum_{j = 1..n} gcd(n,j)*cos(4*Pi*j/n). (End)
From Peter Bala, Dec 30 2023: (Start)
a(n) = Sum_{d divides gcd(2,n)} d*phi(n/d), where phi(n) = A000010(n) denotes Euler's totient function.
Sum_{d divides n} a(d) = 2*n for n even, else equals n (van der Kamp, equation 26).
Dirichlet g.f.: zeta(s-1)*(1 + 2^(1-s))/zeta(s).
The Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x^2)^2. See A022998.
Multiplicative with a(2) = 3, a(2^k) = 2^k for k >= 2 and a(p^k) = p*k - p^(k-1) for odd primes p.
If n divides m then a(n) divides 3*a(m). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 9/(2*Pi^2) = 0.455945... (A088245). - Amiram Eldar, Jan 18 2024

A382252 Triangle T(n,k) = numerator of (n+k)/(1+n*k), 0 <= k <= n >= 0, read by rows.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 3, 1, 5, 3, 4, 1, 2, 7, 8, 5, 1, 7, 1, 3, 5, 6, 1, 8, 9, 2, 11, 12, 7, 1, 3, 5, 11, 1, 13, 7, 8, 1, 10, 11, 4, 13, 2, 5, 16, 9, 1, 11, 3, 13, 7, 3, 1, 17, 9, 10, 1, 4, 13, 14, 5, 16, 17, 2, 19, 20, 11, 1, 13, 7, 1, 2, 17, 3, 19, 1, 7, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24
Offset: 0

Views

Author

M. F. Hasler, Apr 15 2025

Keywords

Comments

Since the operation n @ k := (n + k)/(1 + n*k) is commutative, it is sufficient to list only the lower half of the "multiplication table", which would otherwise be an infinite square array. This triangle lists the numerators, and A382253 lists the denominators.

Examples

			The table for the operation n @ k := (n + k)/(1 + n*k) starts as follows:
(0 is the neutral element for the operation: n @ 0 = n = 0 @ n, therefore row and column 0 give the column and row headers.)
  0    1    2     3     4     5     6     7     8    Numerators of  0;
  1    1    1     1     1     1     1     1     1     lower left    1, 1:
  2    1   4/5   5/7   2/3   7/11  8/13  3/5  10/17    triangle:    2, 1, 4;
  3    1   5/7   3/5   7/13  1/2   9/19  5/11 11/25                 3, 1, 5, 3
  4    1   2/3   7/13  8/17  3/7   2/5  11/29  4/11                 4, 1, 2, 7, 8;
  5    1   7/11  1/2   3/7   5/13 11/31  1/3  13/41                 etc.
  6    1   8/13  9/19  2/5  11/31 12/37 13/43  2/7
  7    1   3/5   5/11 11/29  1/3  13/43  7/25  5/19
  8    1  10/17 11/25  4/11 13/41  2/7   5/19 16/65
This sequence lists the numerators of the values, where numerator(x) = x for integers, and only for the lower left triangle of the table, by rows.
		

Crossrefs

Cf. A382253 (denominators), A382257 (related); A228564 (main diagonal), A001477 (row & col. 0), A000012 (row & col. 1).

Programs

  • PARI
    apply( {A382252(n,k=-1)= k<0&& k=n-(1+n=(sqrtint(8*n+1)-1)\2)*n/2; numerator((n+k)/(1+n*k))}, [0..30])

Formula

T(n,k) = T(k,n) for all n, k >= 0; therefore only k <= n is considered here.
T(n,0) = T(0,n) = n and T(n,1) = T(1,n) = 1 for all n >= 0.
T(n,n) = A022998(n) = n if odd, else 2*n.

A022997 Numerator of n*(n-2)*(2*n-1)/(2*(n-1)).

Original entry on oeis.org

0, 15, 28, 135, 132, 455, 360, 1071, 760, 2079, 1380, 3575, 2268, 5655, 3472, 8415, 5040, 11951, 7020, 16359, 9460, 21735, 12408, 28175, 15912, 35775, 20020, 44631, 24780, 54839, 30240, 66495, 36448, 79695, 43452, 94535, 51300, 111111, 60040, 129519, 69720, 149855
Offset: 2

Views

Author

Keywords

Examples

			Fractions begins with 0, 15/4, 28/3, 135/8, 132/5, 455/12, 360/7, 1071/16, 760/9, 2079/20, 1380/11, 3575/24, ...
		

Crossrefs

Cf. A022998 (denominators, with an offset shift).

Programs

  • Mathematica
    a[n_] := Numerator[n*(n - 2)*(2*n - 1)/(2*(n - 1))]; Array[a, 50, 2] (* Amiram Eldar, Sep 21 2023 *)
  • PARI
    a(n) = numerator(n*(n-2)*(2*n-1)/(2*(n-1))); \\ Amiram Eldar, Sep 21 2023

Formula

G.f.: x^3*(x^6+5x^4+20x^3+75x^2+28x+15)/((x-1)^4*(x+1)^4). - Ralf Stephan, Sep 03 2003
Sum_{n>=3} 1/a(n) = 11/9 + Pi/6 - 7*log(2)/3. - Amiram Eldar, Sep 21 2023

Extensions

More terms from Amiram Eldar, Sep 21 2023

A118583 Numerator of sum of first p reciprocals of p-simplex numbers divided by p^4, where p = prime(n) for n > 2.

Original entry on oeis.org

1, 5, 53, 789, 237493, 2576561, 338350897, 616410400171, 2603853251291, 5745400286707685, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067
Offset: 3

Views

Author

Alexander Adamchuk, May 09 2007

Keywords

Examples

			Prime(3) = 5.
a(3) = 1 because A118431(5)/5^4 = 1, where A118431(5) = Numerator[ 1/C(4+1,5) + 1/C(4+2,5) + 1/C(4+3,5) + 1/C(4+4,5) +1/C(4+5,5) ] = Numerator[ 1/1 + 1/6 + 1/21 + 1/56 + 1/126 ] = 625.
		

Crossrefs

Cf. A022998 = Numerator of sum of reciprocals of first n triangular numbers
Cf. A118391 = Numerator of sum of reciprocals of first n tetrahedral numbers A000292.
Cf. A118431 = Numerator of sum of reciprocals of first n 5-simplex numbers A000389.

Programs

  • Mathematica
    Table[Numerator[Sum[1 /Binomial[ n+Prime[k]-1, Prime[k]], {n,1,Prime[k]} ]]/ Prime[k]^4, {k,3,25}]
  • PARI
    for(n=3,10, print1(numerator(sum(k=1,prime(n), 1/(binomial(k+ prime(n)-1, prime(n)))))/prime(n)^4, ", ")) \\ G. C. Greubel, Nov 25 2017

Formula

a(n) = numerator( Sum_{k=1..prime(n)} ( 1/binomial( k + prime(n) - 1, prime(n) ) ))/prime(n)^4 for n > 2.

A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 5, 2, 1, 1, 1, 3, 1, 5, 3, 1, 2, 1, 1, 1, 1, 5, 1, 7, 2, 1, 1, 2, 1, 4, 1, 2, 7, 8, 1, 2, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 1, 1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 1, 2
Offset: 0

Views

Author

Paul Curtz, Jul 07 2014

Keywords

Comments

Numerators: A244734(n,k).
See A244734 for the first entries of the rational triangle T(n,k).

Examples

			T(0,0) = 1/1, T(1,0) = 2/1, T(1,1) = 3/2,... .
The triangle a(n,k) begins:
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
0:   1
1:   1 2
2:   1 2 1
3:   1 1 1 2
4:   1 1 3 2 1
5:   1 2 1 4 1 2
6:   1 2 1 4 5 2 1
7:   1 1 3 1 5 3 1 2
8:   1 1 1 1 5 1 7 2 1
9:   1 2 1 4 1 2 7 8 1  2
10:  1 2 3 4 1 6 7 8 9  2  1
11:  1 1 1 2 5 1 7 4 3  5  1  2
12:  1 1 1 2 5 1 7 4 3  5 11  2 1
13:  1 2 3 4 5 6 1 8 9 10 11 12 1   2
14:  1 2 1 4 1 2 1 8 3  2 11  4 13  2  1
15:  1 1 1 1 1 1 7 1 3  1 11  1 13  7  1  2
16:  1 1 3 1 5 3 7 1 9  5 11  3 13  7 15  2  1
17:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16  1  2
18:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16 17  2  1
19:  1 1 3 2 1 3 7 4 9  1 11  6 13  7  3  8 17  9  1  2
20:  1 1 1 2 1 1 1 4 3  1 11  2 13  1  1  8 17  3 19  2  1
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
.. reformatted - _Wolfdieter Lang_, Jul 28 2014 .
The second column is of period 4: repeat 2, 2, 1, 1. From A014695 or A130658.
The third column is of period 3: repeat 1, 1, 3. From A109007.
The fourth column is of period 8: repeat 2, 2, 4, 4, 1, 1, 4, 4.
The fifth column is of period 5: repeat 1, 1, 5, 5, 5.
The sixth column is of period 12: repeat 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3 .
The seventh column is of period 7: repeat 1, 1, 7, 7, 7, 7, 7.
Hence the positive terms of A022998.
Main diagonal: A000034(n).
Alternate main and second diagonal: A130658(n).
Common denominator by row: 1, 2, 2, 2, 6, 4, 20, 30, 70, ... .
		

Crossrefs

Programs

  • Mathematica
    Table[(n*(n+1)/2+k+1)/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 08 2014 *)

Formula

a(n,k) = denominator((n*(n+1)/2 + k + 1)/(k+1)) for n >= k >= 0.

Extensions

Editse: Name reformulated, comment with T(n,k) reference added. - Wolfdieter Lang, Jul 28 2014

A257942 a(n) = (n+1)*(n+2)/A014695(n+1), where A014695 is repeat (1, 2, 2, 1).

Original entry on oeis.org

1, 3, 12, 20, 15, 21, 56, 72, 45, 55, 132, 156, 91, 105, 240, 272, 153, 171, 380, 420, 231, 253, 552, 600, 325, 351, 756, 812, 435, 465, 992, 1056, 561, 595, 1260, 1332, 703, 741, 1560, 1640, 861, 903, 1892, 1980, 1035, 1081, 2256, 2352, 1225, 1275, 2652
Offset: 0

Views

Author

Paul Curtz, Jul 14 2015

Keywords

Comments

Consider, for n >= 0, a sequence s(n). A useful transform is wi(n) = s(0), s(2), s(3), ..., i.e., s(n) without s(1).
For s(n) = 1/(n+1), wi(n)= 1, 1/3, 1/4, 1/5, ..., whose inverse binomial transform is f(n) = 1, -2/3, 7/12, -11/20, 8/15, -11/21, 29/56, -37/72, 23/45, -28/55, 67/132, -79/156, 46/91, -53/105, 121/240, -137/272, ...
The denominator of f(n) is a(n), for n >= 0.
If the numerator of f(n) is b(n), then it can be seen that b(n+1) = -(-1)^n* A226089(n).
Alternating a(n) - b(n) with a(n) + b(n) yields 0, 1, 5, 9, ... = A160050(n+1).
a(4n+1) is linked to the Rydberg-Ritz spectra of hydrogen.
h(n) = 0, 0, 1, 1, 4, 4, 3, 3, 8, 8, 5, 5, ... = duplicated A022998(n).
A022998(n) is linked to the Balmer series (see A246943(n)).
With an initial 0 and offset=0, a(-n) = a(n). Then (a(n+10) - a(n-10))/10 = 1, 6, 10, 7, 9, 22, 26, ... = g(n). a(n) mod 9 is of period 20.

Crossrefs

Cf. A002378(n+1), A014695(n+1)=A130658(n+2), A014634, A033567(n+1), A104188(n+1), 4*A007742(n+1), A160050 (in A226089), A022998, A109613, A000217(n+1), A246943.

Programs

  • Maple
    A257942:=n->(n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2): seq(A257942(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2015
  • Mathematica
    CoefficientList[Series[-(x^6 + 9 x^4 - 8 x^3 + 9 x^2 + 1)/((x - 1)^3 (x^2 + 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jul 14 2015 *)
    (* Using inverse binomial transform *) s[0]=1; s[n_] := 1/(n+2); f[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*s[k], {k, 0, n}]; Table[f[n]//Denominator, {n, 0, 50}] (* Jean-François Alcover, Jul 14 2015 *)
    LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 3, 12, 20, 15, 21, 56, 72, 45}, 55] (* Vincenzo Librandi, Jul 15 2015 *)
  • PARI
    Vec(-(x^6+9*x^4-8*x^3+9*x^2+1)/((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 14 2015
    
  • PARI
    a(n)=(n+1)*(n+2)/if(n%4<2,2,1) \\ Charles R Greathouse IV, Jul 14 2015

Formula

a(4n) = (2*n+1)*(4*n+1).
a(4n+1) = (2*n+1)*(4*n+3).
a(4n+2) = (4*n+3)*(4*n+4).
a(4n+3) = (4*n+4)*(4*n+5).
a(n) = A064038(n+2) * (period 4: repeat 1, 1, 4, 4).
From Colin Barker, Jul 14 2015: (Start)
a(n) = (-1/8+i/8)*(((-3-i*3)+i*(-i)^n+i^n)*(2+3*n+n^2)) where i=sqrt(-1).
G.f.: -(x^6+9*x^4-8*x^3+9*x^2+1) / ((x-1)^3*(x^2+1)^3). (End)
a(n) = h(n+2) * A109613(n+1).
a(n) = (n+1)*(n+2) * period 4:repeat (1, 1, 2, 2) /2.
From Wesley Ivan Hurt, Jul 18 2015: (Start)
a(n) = (n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2).
a(n) = 3*a(n-1)-6*a(n-2)+10*a(n-3)-12*a(n-4)+12*a(n-5)-10*a(n-6)+6*a(n-7)-3*a(n-8)+a(n-9), n>9. (End)
Sum_{n>=0} 1/a(n) = Pi/4 + 1. - Amiram Eldar, Aug 14 2022

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017

A290168 If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.

Original entry on oeis.org

0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0

Views

Author

Keywords

Comments

Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017

Formula

G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022

A362218 Three-column array read by rows: row n gives the unique ordered primitive Pythagorean triple (a,b,c) with a

Original entry on oeis.org

3, 4, 5, 8, 15, 17, 5, 12, 13, 12, 35, 37, 7, 24, 25, 16, 63, 65, 9, 40, 41, 20, 99, 101, 11, 60, 61, 24, 143, 145, 13, 84, 85, 28, 195, 197, 15, 112, 113, 32, 255, 257, 17, 144, 145, 36, 323, 325, 19, 180, 181, 40, 399, 401
Offset: 3

Keywords

Comments

Given an ordered primitive Pythagorean triple (a,b,c) with a
For n>=3 there exists a unique ordered primitive Pythagorean triple such that (b+c)/a = n.
For n odd, the triple is {n, (n^2-1)/2, (n^2+1)/2}.
For n even, the triple is { 2*n, n^2-1, n^2+1 }.

Examples

			Irregular array begins:
  n=3:   3,  4,  5;
  n=4:   8, 15, 17;
  n=5:   5, 12, 13;
  n=6:  12, 35, 37;
  n=7:   7, 24, 25;
  ...
Row n=3 is (3,4,5) and has (b+c)/a = (4+5)/3 = 3.
Row n=4 is (8,15,17) and has (b+c)/a = (15+17)/8 = 4.
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Cf. A022998 (short leg), A066830 (long leg), A228564 (hypotenuse).

Programs

  • Mathematica
    k=50;
    ternas={{n," ",a,b,c," ",r," "," γ2 "," ",s," ",rb}};Do[If[Mod[t,2]==0,ternas=Join[ternas,{{t," ",2t,t^2-1,t^2+1," ",t-1," ",t," ",t(t+1)," ",t(t-1)}}],ternas=Join[ternas,{{t," ",t,(t^2-1)/2,(t^2+1)/2," ",(t-1)/2," ",t," ",(t(t+1))/2," ",(t(t-1))/2}}]],{t,3,k+2}]
    MatrixForm[Transpose[ternas]]

Formula

T(n,1) = A022998(n).
T(n,2) = A066830(n).
T(n,3) = A228564(n).
a(6*k-3) = 2*k+1;
a(6*k-2) = ((2*k+1)^2 - 1)/2;
a(6*k-1) = ((2*k+1)^2 + 1)/2;
a(6*k) = 4*(k+1);
a(6*k+1) = 4*(k+1)^2 - 1;
a(6*k+2) = 4*(k+1)^2 + 1.

Extensions

Edited by N. J. A. Sloane, Apr 30 2023

A369304 Numbers k for which the polynomial (x-1)^3*(x+1)^k has more than one zero coefficient.

Original entry on oeis.org

3, 6, 14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131, 2239, 2294, 2406, 2463
Offset: 1

Author

Vladimir Petrov Kostov, Jan 19 2024

Keywords

Comments

In this sequence, pairs of consecutive even numbers (excluding the leading term) alternate with pairs of consecutive odd numbers. When in the sequence a(n) is even (resp. when a(n) is odd), the polynomial (x-1)^3*(x+1)^a(n) has two (resp. three) vanishing coefficients.
These are the coefficients of x^j with j = (m(n) +- 2)*(m(n) +- 1)/6, where m(n) = (6*n - 3 - (-1)^n)/4, and for odd a(n), also with j = (a(n) + 3)/2.
The first differences are a(n) - a(n-1) = n+1 if n even, or 2*(n+1) if n odd, for n >= 2 (A022998).
a(n) = A001082(n+2)-2. Indeed, this formula is valid for n=1,...,20 and the even and odd terms of both sequences A001082 and A369304 are the values of quadratic polynomials in n.
The sequence terms are the exponents in the expansion of Sum_{n >= 1} (-1)^(n+1) * x^(3*n) * Product_{k = 2..n} (1 + x^(2*k-1)) = x^3 - x^6 + x^14 - x^19 + x^31 - x^38 + x^54 - x^63 + x^83 - x^94 + ... (set x = -q and replace q with q^2 in Andrews, equation 8). - Peter Bala, Nov 19 2024

Examples

			For n=1, a(1)=3 and the polynomial (x-1)^3*(x+1)^3 = x^6 - 3*x^4 + 3*x^2 - 1 has three vanishing coefficients, those of x^5, x^3 and x.
For n=2, a(2)=6 and the polynomial (x-1)^3*(x+1)^6 = x^9 + 3*x^8 - 8*x^6 - 6*x^5 + 6*x^4 + 8*x^3 - 3*x - 1 has two vanishing coefficients, those of x^7 and x^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {3, 6, 14, 19, 31}, 56] (* Hugo Pfoertner, Feb 12 2024 *)
  • PARI
    isok(k) = #select(x->(x==0), Vec((x-1)^3*(x+1)^k)) > 1; \\ Michel Marcus, Jan 19 2024
    
  • Python
    def A369304(n): return ((n+1<<1)-(n>>1))**2//3-2 # Chai Wah Wu, Mar 05 2024

Formula

a(n) = ((m(n) + 3)^2 - 7)/3 where m(n) = A001651(n) is the n-th natural number not divisible by 3.
G.f.: (x*(1+x+x^2)*(3-x^2))/((1-x)^3*(1+x)^2). - Joerg Arndt, Jan 19 2024
E.g.f.: (4 + (3*x^2 + 13*x - 4)*cosh(x) + (3*x^2 + 11*x - 1)*sinh(x))/4. - Stefano Spezia, Feb 13 2024
Sum_{n>=1} 1/a(n) = 3/2 + (tan((1+2*sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/3)) * Pi/(2*sqrt(7)). - Amiram Eldar, Mar 07 2024
Previous Showing 81-90 of 93 results. Next