cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A316269 Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2

Views

Author

Jianing Song, Jun 28 2018

Keywords

Comments

Define {x(k)} to be an integer sequence satisfying all the following conditions:
(i) {x(k)} satisfies second-order linear recursion, that is, there exists two integers P, Q such that x(k+2) = P*x(k+1) + Q*x(k) holds for all k >= 0.
(ii) {x(k)} is (not necessarily strictly) increasing. ({A000035(k)} satisfies condition (i), but it doesn't satisfy this.)
(iii) All terms in {x(k)} do not share a common factor. ({A024023(k)} satisfies both conditions (i) and (ii), but all terms share a common factor 2.)
(iv) {x(k)} satisfies strong divisibility, that is, gcd(x(m),x(n)) = x(gcd(m,n)) holds for all m, n >= 0. ({A093131(k)} satisfies all conditions (i) to (iii), but 5 = gcd(A093131(2),A093131(3)) != A093131(gcd(2,3)) = 1.)
(v) For all positive integers n, there eventually exists some m > 0 such that n divides x(m). ({A002275(k)} satisfies all conditions (i) to (iv), but 2, 5 and 10 never divide any term.)
Then it's easy to show that the only solutions to {x(k)} are x(k) = A172236(n,k) or x(k) = T(n,k), i.e., x(0) = 0, x(1) = 1, P >= 1, Q = 1 or P >= 2, Q = -1.
The case n = 0 is not included since it gives the period-4 signed sequence 0, 1, 0, -1, 0, 1, 0, -1, ..., the g.f. of which is the inverse of the 4th cyclotomic polynomial.
The case n = 1 is not included since it gives the period-6 signed sequence 0, 1, 1, 0, -1, -1, ..., the g.f. of which is the inverse of the 6th cyclotomic polynomial.
The congruence property: let p be an odd prime which is not divisible by n^2 - 4, then T(n,(p-1)/2) == 1/2(((n-2)/p) - ((n+2)/p)) (mod p), T(n,(p+1)/2) == 1/2(((n-2)/p) + ((n+2)/p)) (mod p). Here ((n-2)/p) is the Legendre symbol. Or equivalently:
((n-2)/p)...((n+2)/p)...T(n,(p-1)/2) mod p...T(n,(p+1)/2) mod p
.....1...........1...............0....................1
....-1..........-1...............0...................-1
.....1..........-1...............1....................0
....-1...........1..............-1....................0
To prove this, rewrite (n +- sqrt(n^2-4))/2 as ((sqrt(n+2) +- sqrt(n-2))/2)^2.
Let E(n,m) be the smallest number l such that m divides T(n,l), we have: E(n,p) divides (p - ((n^2-4)/p))/2 for odd primes p that are not divisible by n^2 - 4. E(n,p) = p for odd primes p that are divisible by n^2 - 4. E(n,2) = 2 for even n and 3 for odd n.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of E(n,m)/m is 1 for even n and 3/2 for odd n. It can be obtained by the value of E(n,2) described above.
Let pi(n,m) be the Pisano period of T(n,k) modulo m, i.e, the smallest number l such that T(n,k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p + ((n-2)/p) if ((n+2)/p) = -1 and (p - ((n-2)/p))/2 if ((n+2)/p) = 1. pi(n,p) = p for odd primes p that are divisible by n - 2 and 2p for odd primes p that are divisible by n + 2. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so pi(n,p^e) = p^e or 2p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1),pi(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of pi(n,m)/m is:
Parity of n...n + 2 is a power of 2 or 3...max{pi(n,m)/m}.....obtained by
....even..........yes (even exponent)............1...........pi(n,2^e) = 2^e
....even...........yes (odd exponent)...........4/3............pi(n,3) = 4
....even...................no....................2.............pi(n,p) = 2p (p >= 3 is any prime factor of n + 2)
.....odd..................yes....................2..........pi(n,3^e) = 2*3^e
.....odd...................no....................3..........pi(n,2p^e) = 6p^e (p >= 5 is any prime factor of n + 2)
The largest possible value of pi(n,m)/m is obtained by infinitely many m except for the case n = 10, in which we have pi(10,3) = 6, pi(10,7) = 8, pi(10,21) = 24 and pi(10,m)/m <= 14/13 for all other m. [Corrected by Jianing Song, Nov 04 2018]
Let z(n,m) be the number of zeros in a period of T(n,k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: for odd primes p that are not divisible by n^2 - 4, z(n,p) = 2 if ((n+2)/p) = -1; 1 or 2 if ((n+2)/p) = 1. z(n,p) = 1 for odd primes p that are divisible by n - 2 and 2 for odd primes p that are divisible by n + 2. z(n,2) = 1.
For all odd primes p, z(n,p) = 2 if and only if pi(n,p) is even, z(n,p) = 1 if and only if pi(n,p) is odd. For all odd primes p, if E(n,p) is even then z(n,p) = 2 (the converse is not necessarily true). [Comment revised by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p. z(n,4) = 1 if n == 2, 3 (mod 4) and 2 if n == 0, 1 (mod 4). z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
By induction it is easy to show that T(n,k) = T(n,m+1)*T(n,k-m) - T(n,m)*T(k-m-1). Let k = 2m we have T(n,2m) = T(n,m)*(T(n,m+1)-T(m-1)); let k = 2m+1 we have T(n,2m+1) = T(n,m+1)^2 - T(n,m)^2 = (T(n,m+1)+T(n,m))*(T(n,m+1)-T(n,m)). So T(n,k) is composite if n >= 3, k >= 3. - Jianing Song, Jul 06 2019

Examples

			The array starts in row n = 2 with columns k >= 0 as follows:
  0      1      2      3      4      5      6
  0      1      3      8     21     55    144
  0      1      4     15     56    209    780
  0      1      5     24    115    551   2640
  0      1      6     35    204   1189   6930
  0      1      7     48    329   2255  15456
  0      1      8     63    496   3905  30744
  0      1      9     80    711   6319  56160
  0      1     10     99    980   9701  96030
  0      1     11    120   1309  14279 155760
		

Crossrefs

Cf. A172236.
Sequences with g.f. 1/(1-k*x+x^2): A001477 (k=2), A001906 (k=3), A001353 (k=4), A004254 (k=5), A001109 (k=6), A004187 (k=7), A001090 (k=8), A018913 (k=9), A004189 (k=10).
Cf. A005563 (4th column), A242135 (5th column), A057722 (6th column).

Programs

  • Mathematica
    Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
  • PARI
    T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2)));
    tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
    
  • PARI
    T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018

Formula

T(2,k) = k; T(n,k) = (((n+sqrt(n^2 - 4))/2)^k - ((n - sqrt(n^2 - 4))/2)^k)/sqrt(n^2 - 4), n >= 3, k >= 0.
T(n^2+2,k) = A172236(n,2k); T(n^4+4n^2+2,k) = A172236(n,4k)/A172236(n,4).
For n >= 2, Sum_{i=1..k} 1/T(n,2^i) = 2/n - ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/T(n,2^k)), where u = (n + sqrt(n^2 - 4))/2, v = (n - sqrt(n^2 - 4))/2 are the two roots of the polynomial x^2 - n*x + 1. As a result, Sum_{i=>1} 1/T(n,2^i) = (n - sqrt(n^2 - 4))/2. - Jianing Song, Apr 21 2019

A366575 Number of divisors of 3^n - 1.

Original entry on oeis.org

2, 4, 4, 10, 6, 16, 4, 24, 8, 24, 8, 80, 4, 16, 24, 112, 8, 128, 8, 180, 16, 64, 8, 384, 24, 16, 64, 160, 16, 768, 16, 256, 32, 128, 48, 1280, 8, 64, 96, 864, 16, 768, 8, 640, 384, 32, 32, 14336, 128, 384, 64, 160, 16, 4096, 128, 1536, 128, 256, 8, 23040, 8
Offset: 1

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=10 because 3^4-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,3^Range[100]-1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma0(3^n-1) = A000005(A024023).

A366576 Sum of the divisors of 3^n-1.

Original entry on oeis.org

3, 15, 42, 186, 399, 1680, 3282, 15876, 31836, 123690, 277344, 1541568, 2391486, 8992680, 25483332, 111757968, 193819392, 967814400, 1744488660, 9366647892, 16912999320, 62424587520, 144219337920, 852903426816, 1397135488896, 4766016364260, 12477973754400
Offset: 1

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=186 because 3^4-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](3^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1,3^Range[30]-1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma(3^n-1) = A000203(A024023).

A249433 Integers n such that n! does not divide the product of elements on row n of Pascal's triangle.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 80, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers n such that A249151(n) < n.
Equally: Integers n such that A249431(n) is negative.

Examples

			See the examples at A249434.
		

Crossrefs

Complement: A249434.
Subsequences: A000225, A024023, A024049, etc., (after their two initial terms, i.e. A249435 without its initial zero is also a subsequence), A249424, A249436.

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022

A086892 Greatest common divisor of 2^n-1 and 3^n-1.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 5, 1, 11, 23, 455, 1, 1, 1, 85, 1, 133, 1, 275, 1, 23, 47, 455, 1, 1, 1, 145, 1, 2387, 1, 85, 23, 1, 71, 23350145, 1, 1, 1, 11275, 1, 2107, 431, 115, 1, 47, 1, 750295, 1, 11, 1, 265, 1, 133, 23, 145, 1, 59, 1, 47322275, 1, 1, 1, 85, 1, 10787, 1, 5, 47, 781, 1
Offset: 1

Views

Author

Joseph H. Silverman (jhs(AT)math.brown.edu), Sep 18 2003

Keywords

Comments

a(n) is a simple (the simplest?) example of a divisibility sequence associated to a rational point on an algebraic group of dimension larger than two. Specifically, it is the divisibility sequence associated to the point (2,3) on the two-dimensional torus G_m^2. Ailon and Rudnick conjecture that a(n) = 1 for infinitely many n.
According to Corvaja, a(n) < 2^n - 1 for all but finitely many n.

References

  • Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of a^n-1 and b^n-1. Math. Z. 243 (2003), no. 1, 79-84

Crossrefs

Programs

  • Haskell
    a086892 n = a086892_list !! (n-1)
    a086892_list = tail $ zipWith gcd a000225_list a003462_list
    -- Reinhard Zumkeller, Jul 18 2015
    
  • Magma
    [Gcd(2^n-1, 3^n-1): n in [1..75]]; // Vincenzo Librandi, Sep 02 2015
  • Maple
    seq(igcd(2^n-1,3^n-1), n=1..100); # Robert Israel, Sep 02 2015
  • Mathematica
    Table[GCD[2^n - 1, 3^n - 1], {n, 100}] (* Vincenzo Librandi, Sep 02 2015 *)
  • PARI
    vector(100,n,gcd(2^n-1,3^n-1))
    

Formula

a(n) = gcd(2^n - 1, 3^n - 1).
a(n) = GCD(A000255(n), A003462(n)) = GCD(A000255(n), A024023(n)). - Reinhard Zumkeller, Mar 26 2004

Extensions

Replaced arXiv URL with non-cached version by R. J. Mathar, Oct 23 2009

A180017 Difference of sums of digits of n in ternary and in binary.

Original entry on oeis.org

0, 0, 1, -1, 1, 1, 0, 0, 3, -1, 0, 0, 0, 0, 1, -1, 3, 3, 0, 0, 2, 0, 1, 1, 2, 2, 3, -3, -1, -1, -2, -2, 3, 1, 2, 2, 0, 0, 1, -1, 2, 2, 1, 1, 3, -1, 0, 0, 2, 2, 3, 1, 3, 3, -2, -2, 1, -1, 0, 0, 0, 0, 1, -3, 3, 3, 2, 2, 4, 2, 3, 3, 2, 2, 3, 1, 3, 3, 2, 2, 6, -2, -1, -1, -1, -1, 0, -2, 1, 1, -2, -2, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 06 2010

Keywords

Comments

This sequence is positive on average, since 1/log(3) > 1/log(4). Do all integers appear infinitely often? - Charles R Greathouse IV, Feb 07 2013

Examples

			For n = 7 = 21_3 = 111_2, a(n) = (2+1) - (1+1+1) = 0.
For n = 8 = 22_3 = 1000_2, a(n) = (2+2) - (1+0+0+0) = 3.
For n = 9 = 100_3 = 1001_2, a(n) = (1+0+0) - (1+0+0+1) = -1.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerDigits[n,3]]-Total[IntegerDigits[n,2]],{n,0,100}] (* Harvey P. Dale, Dec 08 2015 *)
  • PARI
    a(n) = sumdigits(n,3) - sumdigits(n,2); \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A053735(n) - A000120(n);
a(A037301(n)) = 0;
a(A000244(n)) = 1 - A000120(A000244(n));
a(A000079(n)) = A053735(A000079(n)) - 1;
a(A024023(n)) = 2*n - A000120(A024023(n)); a(A000225(n)) = A053735(A000225(n)) - n.
a(n) = A011371(n) - 2*A054861(n). - Henry Bottomley, Feb 16 2024

A180019 Difference of sums of digits of n in decimal and in ternary representation.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 4, 4, 8, -1, -1, 1, 1, 1, 3, 3, 3, 7, 7, -2, 0, 0, 0, 2, 2, 2, 8, 8, 8, 1, 1, 1, 3, 3, 3, 7, 7, 7, 9, 0, 0, 2, 2, 2, 6, 6, 6, 8, 8, -1, 1, 1, 1, 7, 7, 7, 9, 9, 9, 2, 2, 2, 6, 6, 6, 8, 8, 8, 10, 1, 1, 5, 5, 5, 7, 7, 7, 9, 9, 0, 8, 8, 8, 10, 10, 10, 12, 12, 12, 7, 7, 7, 9, 9, 9, 11, 11, 11
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 06 2010

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdigits(n) - sumdigits(n, 3); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = A007953(n) - A053735(n);
a(A037315(n)) = 0;
a(A011557(n)) = 1 - A053735(A011557(n));
a(A000244(n)) = A007953(A000244(n)) - 1;
a(A002283(n)) = A008591(n) - A053735(A002283(n));
a(A024023(n)) = A007953(A024023(n)) - 2*n.

A248216 a(n) = 6^n - 2^n.

Original entry on oeis.org

0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11).

Programs

  • Magma
    [6^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
    LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
  • Sage
    [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021

Formula

G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022
a(n) = A000400(n) - A000079(n). - Bernard Schott, Mar 27 2022

A027902 Divisors of 3^24 - 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 20, 26, 28, 32, 35, 40, 41, 52, 56, 65, 70, 73, 80, 82, 91, 104, 112, 130, 140, 146, 160, 164, 182, 205, 208, 224, 260, 280, 287, 292, 328, 364, 365, 410, 416, 455, 511, 520, 533
Offset: 1

Views

Author

Keywords

Comments

The sequence is finite with 384 terms: A024023(24)=282429536480 is the last term. - Reinhard Zumkeller, Mar 11 2010

Programs

Previous Showing 31-40 of 86 results. Next