cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A058482 Number of 3 X n binary matrices with no zero rows or columns.

Original entry on oeis.org

1, 25, 265, 2161, 16081, 115465, 816985, 5745121, 40294561, 282298105, 1976795305, 13839692881, 96884227441, 678208723945, 4747518463225, 33232801429441, 232630126566721, 1628412435648985, 11398891698588745, 79792255837258801, 558545832702224401
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Crossrefs

Cf. A055602, A024206, A055609 (unlabeled case), A058481, column 3 of A183109 and A218695.

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.
a(n) = 7^n-3*3^n+3.
a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x*(21*x^2+14*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - Colin Barker, Jul 10 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
More terms from Colin Barker, Jul 10 2013

A135841 A000012 * A135839 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 2, 1, 1, 6, 3, 2, 2, 1, 1, 7, 3, 3, 2, 2, 1, 1, 8, 4, 3, 3, 2, 2, 1, 1, 9, 4, 4, 3, 3, 2, 2, 1, 1, 10, 5, 4, 4, 3, 3, 2, 2, 1, 1, 11, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 12, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 13, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

Row sums = A024206: (1, 3, 5, 8, 11, 15, 19, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 1, 1;
  4, 2, 1, 1;
  5, 2, 2, 1, 1;
  6, 3, 2, 2, 1, 1;
  7, 3, 3, 2, 2, 1, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[1, 1] := 1; T[n_, 1] := n; T[n_, n_] := 1; T[n_, k_] := Floor[(n - k + 2)/2]; Table[T[n, k], {n, 1, 15}, {k, 1, n}]//Flatten (* G. C. Greubel, Dec 06 2016 *)

Formula

T(1, 1) = 1, T(n, 1) = n, T(n, n) = 1, T(n, k) = floor((n - k + 2)/2). - G. C. Greubel, Dec 06 2016

Extensions

Terms a(56) and beyond from G. C. Greubel, Dec 06 2016

A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 16, 8, 1, 1, 11, 39, 39, 11, 1, 1, 15, 87, 168, 87, 15, 1, 1, 19, 176, 644, 644, 176, 19, 1, 1, 24, 338, 2348, 4849, 2348, 338, 24, 1, 1, 29, 613, 8137, 37159, 37159, 8137, 613, 29, 1, 1, 35, 1071, 27047, 286747, 679054, 286747, 27047, 1071
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.

Examples

			Triangle begins:
  k:  0   1   2   3   4   5   6   7
      -----------------------------
n=0:  1
n=1:  1   1
n=2:  1   3   1
n=3:  1   5   5   1
n=4:  1   8  16   8   1
n=5:  1  11  39  39  11   1
n=6:  1  15  87 168  87  15   1
n=7:  1  19 176 644 644 176  19   1
There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
		

Crossrefs

Cf. A022167, A024206(n+1) (column k=1), A076831.

A128221 A128174 * A127701.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 3, 1, 5, 1, 2, 1, 4, 1, 6, 1, 1, 3, 1, 5, 1, 7, 1, 2, 1, 4, 1, 6, 1, 8, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13
Offset: 1

Views

Author

Gary W. Adamson, Feb 19 2007

Keywords

Comments

Row sums = A024206: (1, 3, 5, 8, 11, 15, 19, ...). A128222 = A127701 * A128174.
Table T(n,k) = n, if k is odd, 1 if k is even; n, k > 0, read by antidiagonals. -Boris Putievskiy, Jan 30 2013

Examples

			From _Boris Putievskiy_, Jan 30 2013: (Start)
The start of the sequence as a table:
  1, 1, 1, 1, 1, 1, 1, ...
  2, 1, 2, 1, 2, 1, 2, ...
  3, 1, 3, 1, 3, 1, 3, ...
  4, 1, 4, 1, 4, 1, 4, ...
  5, 1, 5, 1, 5, 1, 5, ...
  6, 1, 6, 1, 6, 1, 6, ...
  7, 1, 7, 1, 7, 1, 7, ...
  ...
(End)
First few rows of the triangle are:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 1, 4;
  1, 1, 3, 1, 5;
  1, 2, 1, 4, 1, 6;
  1, 1, 3, 1, 5, 1, 7;
  ...
		

Crossrefs

Programs

  • Mathematica
    a128221[n_, k_] := If[EvenQ[n-k], k, 1]/;1<=k<=n
    a128221[r_] := Table[a128221[n, k], {n, 1, r}, {k, 1, n}]
    TableForm[a128221[7]] (* triangle *)
    Flatten[a128221[10]] (* data *) (* Hartmut F. W. Hoft, Mar 08 2017 *)
    t[r_, c_] := If[ OddQ@ c, r, 1]; Table[t[k, n - k + 1], {n, 13}, {k, n}] // Flatten (* Robert G. Wilson v, Mar 09 2017 *)

Formula

A128174 * A127701 as infinite lower triangular matrices. By columns, k-th column = k, 1, k, ...; k=1,2,3,...
From Boris Putievskiy, Jan 30 2013: (Start)
As table T(n,k) = (1+(-1)^k)/2 - (-1+(-1)^k)*n/2.
As linear sequence a(n) = (1+(-1)^A004736(n))/2 - (-1+(-1)^A004736(n))*A002260(n)/2. a(n) = (1+(-1)^j)/2 - (-1+(-1)^j)*i/2,
where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). (End)

Extensions

More terms from Robert G. Wilson v, Mar 09 2017

A234305 Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1

Views

Author

Paul Curtz, Jan 02 2014

Keywords

Comments

a(n) is not A173642, a compact Bohr-Stoner model (1924), modified by Charles Janet in 1930. The good distribution is A168208.
Only sequences N16(n) in A234398 are used:
N16(1)= 1 followed by 2's = A040000,
N16(2)= 1, 2, 3, 4, 5, followed by 6's = A101272,
N16(3)= 1 to 9, followed by 10's,
N16(4)= 1 to 13, followed by 14's, etc.
The distribution by rows are in the example.
The N16(n)'s are respectively on columns (hence triangle T)
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, A002620(n+2)
3, 5, 8, 11, 15, 19, 24, 29, 35, A024206(n+2)
7, 10, 14, 18, 23, 28, 34, A014616(n+3)
13, 17, 22, 27, 33, A004116(n+4)
21, 26, 32,
31, etc.
See A163255.
Antidiagonals give the natural numbers A000027, like rows sums in the example.
A033638=1, 1, 2, 3, 5, 7,... is upon the triangle T.

Examples

			1,      H
2,       He
2, 1,    Li
2, 2,    Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
		

Crossrefs

Cf. A002061, A002522 (or A160457), A014206, A059100, diagonals of the triangle T. A004526.

A265282 Number of triangles in a certain geometric structure: see "Illustration of initial terms" link for precise definition.

Original entry on oeis.org

0, 1, 3, 5, 10, 13, 22, 26, 41, 46, 68, 74, 105, 112, 153, 161, 214, 223, 289, 299, 380, 391, 488, 500, 615, 628, 762, 776, 931, 946, 1123, 1139, 1340, 1357, 1583, 1601, 1854, 1873, 2154, 2174, 2485, 2506, 2848, 2870, 3245, 3268, 3677, 3701, 4146, 4171, 4653
Offset: 0

Views

Author

Luce ETIENNE, Dec 06 2015

Keywords

Comments

In words: This sequence gives the number of triangles of all sizes in a (2*n^2+8*n-1+(-1)^n)/8-polyiamond with a (7*n-2-(n-2)*(-1)^n)/4-gon: we have (2*n^3+9*n^2+31*n+21+3*(n^2-5*n-7)*(-1)^n)/96 triangles in a direction and (2*n^3+27*n^2+109*n-66+3*(n^2+9*n+18)*(-1)^n+12*(-1)^((2*n-1+(-1)^n)/4))/192 triangles in the other direction. (But the Illustration link is far more informative. - N. J. A. Sloane, Jan 23 2016)
At stage n, we count (2*n^2 + 6*n + 3 - (2*n+3)*(-1)^n)/16 triangles of size 1 in one direction and (2*n^2 + 10*n - 5 + (2*n+5)*(-1)^n)/16 triangles of size 1 in the opposite direction. The total number of triangles of size 1 in both directions is A024206(n+1).
We observe that a(4)=10 strengthens the Pythagorean relation between 4 and 10 (Tetraktys): cf. triangular numbers, A000217; and that it is from n = 4 we can see and count hexagonal and dodecagonal forms, for example, in a reticular system (incomplete with hexagonal holes) by opposition to the compact shape obtained from A002717.
We can obtain this reticular system from A248851.

Crossrefs

Programs

  • Magma
    [(2*n^3 + 15*n^2 + 57*n - 8 + (3*n^2 - n + 4)*(-1)^n + 4*(-1)^((2*n - 1 + (-1)^n) div 4)) / 64: n in [0..50]]; // Vincenzo Librandi, Dec 07 2015
    
  • Mathematica
    Table[(2*n^3 + 15*n^2 + 57*n - 8 + (3*n^2 - n + 4)*(-1)^n +
        4*(-1)^((2*n - 1 + (-1)^n)/4))/64, {n, 0, 100}] (* G. C. Greubel, Dec 20 2015 *)
    LinearRecurrence[{1,2,-2,0,0,-2,2,1,-1},{0,1,3,5,10,13,22,26,41},60] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    vector(100, n, n--; (2*n^3+15*n^2+57*n-8+(3*n^2-n+4)*(-1)^n+4*(-1)^((2*n-1+(-1)^n)/4))/64) \\ Altug Alkan, Dec 06 2015
    
  • PARI
    concat(0, Vec(x*(1+2*x+x^3-x^4-x^5+x^7)/((1-x)^4*(1+x)^3*(1+x^2)) + O(x^100))) \\ Colin Barker, Dec 07 2015

Formula

a(n) = A045947(floor(n/2)) + A024206(n+1). Note that A045947(floor(n/2)) = (2*n^3-n^2-7*n+(3*n^2-n-4)*(-1)^n+4*(-1)^((2*n-1+(-1)^n)/4))/64.
a(n) = (2*n^3 + 15*n^2 + 57*n - 8 + (3*n^2 - n + 4)*(-1)^n + 4*(-1)^((2*n - 1 + (-1)^n)/4))/64.
G.f.: x*(1+2*x+x^3-x^4-x^5+x^7) / ((1-x)^4*(1+x)^3*(1+x^2)). - Colin Barker, Dec 07 2015

Extensions

a(26) corrected by Altug Alkan, Dec 06 2015

A342472 T(n,k) is the maximum sum of products of adjacent parts in all compositions of n into k parts: triangle read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 4, 4, 3, 0, 6, 6, 5, 4, 0, 9, 9, 8, 6, 5, 0, 12, 12, 11, 9, 7, 6, 0, 16, 16, 15, 12, 10, 8, 7, 0, 20, 20, 19, 16, 13, 11, 9, 8, 0, 25, 25, 24, 20, 17, 14, 12, 10, 9, 0, 30, 30, 29, 25, 21, 18, 15, 13, 11, 10, 0, 36, 36, 35, 30, 26, 22, 19, 16, 14, 12, 11, 0, 42, 42, 41
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2021

Keywords

Comments

Denote compositions of n into k parts by n = p_1 +p_2 + .... +p_k, p_i>0. For these compositions let S(n,k,c) = p_1*p_2 +p_2*p_3 +.. +p_{k-1}*p_k. Then T(n,k) = max_c S(n,k,c), where c runs through all A007318(n-1,k-1) compositions.
Background: Let p_i be the number of elements in level i of a poset of n points. Connect all points on level i with all points on level i+1 "maximally" with p_i*p_{i+1} arcs in the Hasse diagram. So T(n,k) is a lower bound on the maximum number of arcs in a Hasse diagram with k levels, and the maximum T(n,k) (+1 to add the diagrams of n disconnected elements) of a row is a lower bound of the row lengths of A342447.
T(n,2) = A002620(n) has the standard interpretation of maximizing the area p_1*p_2 of a rectangle given the semiperimeter p_1+p_2=n. [S=p_1*p_2=p_1*(n-p_1) is a quadratic function of p_1 with well defined maximum.] - R. J. Mathar, Mar 14 2021
T(n,3) maximizes S = +p_1*p_2+p_2*p_3 = p_1*p_2+p_2*(n-p_1-p_2) = p_2*(n-p_2) which again is a quadratic function of p_2 with well defined maximum. - R. J. Mathar, Mar 14 2021
For k>=4 and odd n-k consider p_1=1, p_2=(n-k+1)/2, p_3=p_2+1, p_4=p_5=..=p_k=1 which gives S= n+(n-k)+[(n-k)^2-5]/4, a lower bound (apparently strict). For k>=4 and even n-k consider p_1=1, p_2=p_3=(n-k+2)/2, p_4=p_5=...=p_k=1 which gives S=n-2+(n-k+2)^2/4, a lower bound (apparently strict). - R. J. Mathar, Mar 14 2021

Examples

			For n=6 and k=3 for example 6 = 2+3+1 = 1+3+2 obtain 2*3+3*1 = 9 = T(6,3).
For n=6 and k=4 for example 6 = 1+2+2+1 obtains 1*2+2*2+2*1=8 =T(6,4).
For n=7 and k=4 for example 7 = 1+3+2+1 = 1+2+3+1 obtains 1*2+2*3+3*1 = 11 = T(7,4).
For n=7 and k=5 for example 7 = 1+1+2+2+1 = 1+2+2+1+1 obtains 1*2+2*2+2*1+1*1 = 9 = T(7,5).
The triangle starts with n>=1 and 1<=k<=n as:
  0
  0   1
  0   2   2
  0   4   4   3
  0   6   6   5   4
  0   9   9   8   6   5
  0  12  12  11   9   7   6
  0  16  16  15  12  10   8   7
  0  20  20  19  16  13  11   9   8
  0  25  25  24  20  17  14  12  10   9
  0  30  30  29  25  21  18  15  13  11  10
  0  36  36  35  30  26  22  19  16  14  12  11
  0  42  42  41  36  31  27  23  20  17  15  13  12
  0  49  49  48  42  37  32  28  24  21  18  16  14  13
  0  56  56  55  49  43  38  33  29  25  22  19  17  15  14
		

Crossrefs

Cf. A002620 (columns 2,3,5 ?), A024206 (column 4?), A033638 (column 6?), A290743 (column 7?), A342447.

Programs

  • Maple
    # Maximum of Sum_i  p_i*p(i+1) over all combinations n=p_1+p_2+..p_k
    A342472 := proc(n,k)
        local s,c;
        s := 0 ;
        for c in combinat[composition](n,k) do
            add( c[i]*c[i+1],i=1..nops(c)-1) ;
            s := max(s,%) ;
        end do:
        s ;
    end proc:
    for n from 1 to 15 do
        for k from 1 to n do
            printf("%3d ",A342472(n,k)) ;
        end do:
        printf("\n") ;
    end do:

Formula

T(n,n) = n-1; where all p_i=1.
T(n,2) = T(n,3) = A002620(n).
T(n,k) >= 2*n-k+((n-k)^2-5)/4, n-k odd, k>=4. - R. J. Mathar, Mar 14 2021
T(n,k) >= n-2+(n-k+2)^2/4, n-k even, k>=4. - R. J. Mathar, Mar 14 2021

A377802 Triangle read by rows: T(n, k) = (2 * (n+1)^2 + 7 - (-1)^n) / 8 - k.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 6, 5, 4, 3, 9, 8, 7, 6, 5, 12, 11, 10, 9, 8, 7, 16, 15, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 14, 13, 25, 24, 23, 22, 21, 20, 19, 18, 17, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31
Offset: 1

Views

Author

Werner Schulte, Nov 07 2024

Keywords

Comments

The natural numbers, based on quarter-squares (A002620 and A033638); every natural number occurs exactly twice.

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\ k :   1   2   3   4   5   6   7   8   9  10  11  12  13
==========================================================
   1 :   1
   2 :   2   1
   3 :   4   3   2
   4 :   6   5   4   3
   5 :   9   8   7   6   5
   6 :  12  11  10   9   8   7
   7 :  16  15  14  13  12  11  10
   8 :  20  19  18  17  16  15  14  13
   9 :  25  24  23  22  21  20  19  18  17
  10 :  30  29  28  27  26  25  24  23  22  21
  11 :  36  35  34  33  32  31  30  29  28  27  26
  12 :  42  41  40  39  38  37  36  35  34  33  32  31
  13 :  49  48  47  46  45  44  43  42  41  40  39  38  37
  etc.
		

Crossrefs

A002620 (column 1), A024206 (column 2), A014616 (column 3), A004116 (column 4), A033638 (main diagonal), A290743 (1st subdiagonal).

Programs

  • PARI
    T(n,k)=(2*(n+1)^2+7-(-1)^n)/8-k

Formula

T(n, k) = A002620(n+1) + 1 - k.
T(2*n-1, n) = n^2 - n + 1 = A002061(n); T(2*n-2, n) = (n-1)^2 = A000290(n-1) for n > 1; T(2*n-3, n) = (n-1) * (n-2) = A002378(n-2) for n > 2; T(2*n-4, n) = (n-1) * (n-3) = A005563(n-3) for n > 3.
Row sums are (2 * n^3 + 5 * n - n * (-1)^n) / 8 = (A006003(n) + A026741(n)) / 2.
G.f.: x*y*(1 - x*y + x^2*y + x^4*y^2 - x^5*y^3 + x^6*y^3 - x^3*y*(1 + 2*y - y^2))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Nov 08 2024

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A227779 Least splitter of s(n) and s(n+1), where s(n) = sum{(k + 1/2)^(-1/2), k >= 1}.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 3, 5, 1, 3, 2, 3, 5, 1, 4, 3, 2, 3, 6, 1, 4, 3, 2, 3, 5, 1, 5, 3, 2, 3, 4, 7, 1, 4, 3, 2, 3, 4, 6, 1, 5, 3, 5, 2, 3, 4, 7, 1, 5, 3, 5, 2, 3, 4, 6, 1, 6, 4, 3, 2, 5, 3, 5, 8, 1, 5, 4, 3, 2, 5, 3
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. It appears that d=1 (i.e., c/d is an integer) for rationals c/d in positions given by A024206.

Examples

			The first 15 splitting rationals are 1, 3/2, 2, 5/2, 3, 7/2, 11/3, 4, 9/2, 14/3, 5, 16/3, 11/2, 23/4, 6.
		

Crossrefs

Cf. A227631.

Programs

  • Mathematica
    r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = Sum[(k + 1/2)^(-1/2), {k, 1, n}]; t = Table[r[s[n], s[n + 1]], {n, 1, 220}]; Denominator[t] (* Peter J. C. Moses, Jul 15 2013 *)
Previous Showing 31-40 of 47 results. Next