cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A228332 Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(6).

Original entry on oeis.org

1, 68, 1778, 43080, 958430, 20119736, 405350788, 7921691280, 151231519350, 2834134359000, 52320693313020, 953960351550960, 17212782834351468, 307826474156801840, 5462948893700675720, 96303960593503261984, 1687752152779483045542, 29424712141610821296408, 510621541414656188646220
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k+1)^6*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)

Formula

Recurrence: n*(2*n+1)*(105*n^5 - 420*n^4 + 588*n^3 - 356*n^2 + 96*n - 10)*a(n) = 2*(4*n-7)*(4*n-5)*(105*n^5 + 105*n^4 - 42*n^3 - 62*n^2 - 7*n + 3)*a(n-1). - Vaclav Kotesovec, Dec 08 2013
a(n) = binomial(4*n,2*n) * (105*n^5 + 105*n^4 - 42*n^3 - 62*n^2 - 7*n + 3) / ((2*n+1)*(4*n-3)*(4*n-1)). - Vaclav Kotesovec, Dec 08 2013

A187359 Catalan trisection: A000108(3*n + 2)/2, n>=0.

Original entry on oeis.org

1, 21, 715, 29393, 1337220, 64822395, 3282060210, 171529806825, 9183676536076, 501121108325684, 27767032438524099, 1558142747453650631, 88366931393503350700, 5056959295818949067010, 291650059796498346544020, 16934386878595523443214745, 989130828878080326811887228, 58078935727891217125276922940, 3426228463922436748774829232156, 202972497563788492865321721683556
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

See the comment under A187357 for the o.g.f.s of the general trisection of a sequence.
The sequence C(3*n+2) starts as 2, 42, 1430, 58786, 2674440, 129644790, 6564120420, 343059613650, ...

Crossrefs

Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187358 (C(3*n+1)).

Programs

  • Mathematica
    Table[CatalanNumber[3*n+2]/2, {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)

Formula

a(n) = C(3*n+2)/2, n>=0, with C(n) = A000108(n).
O.g.f.: (3 - sqrt(1 - 4*x^(1/3)) - sqrt(2)*sqrt(sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) +
(1 + 2*x^(1/3))))/(12*x).
From Ilya Gutkovskiy, Jan 21 2017: (Start)
E.g.f.: 3F3(5/6,7/6,3/2; 4/3,5/3,2; 64*x).
a(n) ~ 8^(2*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
Sum_{n>=0} a(n)/4^n = 1 - sqrt(3+2*sqrt(3))/3. - Amiram Eldar, Mar 16 2022
a(n) = (1/2)*Product_{1 <= i <= j <= 3*n+1} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023

A230061 Primes of the form Catalan(n)+1.

Original entry on oeis.org

2, 3, 43, 58787, 4861946401453, 337485502510215975556783793455058624701, 4180080073556524734514695828170907458428751314321, 1000134600800354781929399250536541864362461089950801, 944973797977428207852605870454939596837230758234904051
Offset: 1

Views

Author

K. D. Bajpai, Oct 08 2013

Keywords

Comments

The 25th term a(25) in the sequence has 693 digits.
a(26) has 1335 digits; a(27) has 1647 digits; a(28) has 1694 digits; a(29) has 2554 digits; a(30) has 4857 digits; a(31) has 4876 digits; a(32) has 9641 digits. - Charles R Greathouse IV, Oct 09 2013

Examples

			a(3)= 43: Catalan(5)= (2*5)!/(5!*(5+1)!)= 42. Catalan(5)+1= 43 which is prime.
a(4)= 58787: Catalan(11)= (2*11)!/(11!*(11+1)!)= 58786. Catalan(11)+1= 58787 which is prime.
		

Crossrefs

Cf. A053429 (numbers n such that Catalan(n)+1 is prime).

Programs

  • Maple
    KD:= proc() local a,b,c; a:= (2*n)!/(n!*(n + 1)!); b:=a+1;if isprime(b) then return(b): fi; end: seq(KD(),n=1..50);
  • Mathematica
    Select[CatalanNumber[Range[100]]+1,PrimeQ] (* Harvey P. Dale, Aug 26 2021 *)
  • PARI
    for(n=1,1e3,if(ispseudoprime(t=binomial(2*n,n)/(n+1)+1),print1(t", "))) \\ Charles R Greathouse IV, Oct 08 2013

A343386 Number of odd Motzkin n-paths, i.e., Motzkin n-paths with an odd number of up steps.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 20, 56, 168, 456, 1137, 2827, 7458, 20670, 57577, 157691, 427976, 1170552, 3248411, 9096497, 25505562, 71436182, 200338074, 564083786, 1595055520, 4522769520, 12842772295, 36514010301, 103995490758, 296794937626, 848620165860, 2430089817720
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Motzkin n-paths with an odd number of U-steps (see A001006). For example, there are 9 Motzkin 4-paths, of which six have one U-step each, namely: 00UD, 0U0D, 0UD0, U00D, U0D0, and UD00. So a(4) = 6.
Number of Motzkin n-paths that, after removing the horizontal steps, are converted to Dyck (2m)-paths, where 2m <= n and m is odd (see A024492).

Examples

			G.f. = x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 56*x^7 + 168*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := ((n - 1) n HypergeometricPFQ[{1/2 - n/4, 3/4 - n/4, 1 - n/4, 5/4 - n/4}, {3/2, 3/2, 2}, 16])/2;
    Table[a[n], {n, 0, 31}] (* Peter Luschny, Sep 24 2021 *)
  • Python
    M = [4, 9]; E = [1, 1, 1, 1, 3];
    A343386 = [0, 0, 1, 3, 6]
    for n in range(5, 801):
        M.append(((2*n+1)*M[1]+(3*n-3)*M[0])//(n+2))
        E.append(((5*n**2+n-3)*E[4] - (10*n**2-16*n+3)*E[3]
          + (10*n**2-34*n+27)*E[2] + (11*n-5)*(n-3)*E[1]
          - 15*(n-3)*(n-4)*E[0]) // (n*n+2*n))
        A343386.append(M[-1] - E[-1])
        M.pop(0); E.pop(0)

Formula

a(n) = Sum_{k=0..n} binomial(n, 4*k+2) * A000108(2*k+1).
a(n) = A001006(n) - A107587(n).
G.f.: A(x) = (2 - 2*x - sqrt(1-2*x-3*x^2) - sqrt(1-2*x+5*x^2))/(4*x^2).
G.f. A(x) satisfies A(x) = x*A(x) + x^2*A(x)^2 + x^2*B(x)^2 where B(x) is the g.f. of A107587.
a(n) = A107587(n) - A100223(n+2). - R. J. Mathar, Apr 16 2021
D-finite with recurrence: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0, n >= 5. - R. J. Mathar, Apr 17 2021
D-finite with recurrence: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0, n >= 4. - R. J. Mathar, Apr 17 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * (k mod 2). - Gennady Eremin, May 03 2021 [after Paul Barry (A107587)]
a(n) = ((n-1)*n*hypergeom([1/2-n/4, 3/4-n/4, 1-n/4, 5/4-n/4], [3/2, 3/2, 2], 16))/2. - Peter Luschny, Sep 24 2021
a(n) ~ 3^(n + 3/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 27 2024

A024491 a(n) = (1/(4n-1))*C(4n,2n).

Original entry on oeis.org

-1, 2, 10, 84, 858, 9724, 117572, 1485800, 19389690, 259289580, 3534526380, 48932534040, 686119227300, 9723892802904, 139067101832008, 2004484433302736, 29089272078453818, 424672260824486220, 6232570989814602524, 91901608649243484728, 1360850743459951600780
Offset: 0

Views

Author

Keywords

Examples

			sqrt(1/2*(1+sqrt(1-x))) = 1 - 1/8*x - 5/128*x^2 - 21/1024*x^3 - ...
		

Crossrefs

Programs

  • Magma
    [(1/(4*n-1))*Binomial(4*n,2*n) : n in [0..20]]; // Wesley Ivan Hurt, Jan 06 2024
  • Mathematica
    Table[1/(4n-1) Binomial[4n,2n],{n,0,20}] (* or *) With[{c=4Sqrt[x]}, CoefficientList[ Series[(-Sqrt[1-c]-Sqrt[1+c])/2,{x,0,30}],x]] (* Harvey P. Dale, Mar 10 2013 *)

Formula

G.f.: A(x) = -sqrt((1/2)*(1+sqrt(1-16*x))).
With interpolated zeros, this has g.f. -(sqrt(1-4x)+sqrt(1+4x))/2. - Paul Barry, Dec 23 2006
D-finite with recurrence n*(2*n-1)*a(n) - 2*(4*n-3)*(4*n-5)*a(n-1) = 0. - R. J. Mathar, Nov 13 2012
a(n) = A001448(n)/(4*n-1). - R. J. Mathar, Apr 27 2020
From Peter Bala, Apr 02 2023: (Start)
O.g.f. A(x) = - sqrt(1 - 4*x*C(4*x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
The series reversion of -x*A(x) is equal to x * the o.g.f. of A245112. (End)
a(n) ~ 2^(4*n-5/2) / (n^(3/2) * sqrt(Pi)). - Amiram Eldar, Sep 04 2025

Extensions

More terms from Harvey P. Dale, Mar 10 2013

A099976 Bisection of A000984.

Original entry on oeis.org

2, 20, 252, 3432, 48620, 705432, 10400600, 155117520, 2333606220, 35345263800, 538257874440, 8233430727600, 126410606437752, 1946939425648112, 30067266499541040, 465428353255261088, 7219428434016265740
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4*n+2, 2*n+1): n in [0..20]]; // Vincenzo Librandi, May 22 2011
  • Maple
    seq(binomial(4*n+2,2*n+1),n=0..20); # Emeric Deutsch, Dec 20 2004
  • Mathematica
    Array[Binomial[4*# + 2, 2*# + 1] &, 20, 0] (* Paolo Xausa, Jul 11 2024 *)

Formula

a(n) = binomial(4n+2, 2n+1). - Emeric Deutsch, Dec 20 2004
G.f.: 2*sqrt(2)/sqrt(1-16*x)/sqrt(1+sqrt(1-16*x)) = 2 + 60*x/(G(0)-30*x) where G(k)= 2*x*(4*k+3)*(4*k+5) + (2*k+3)*(k+1)- 2*x*(k+1)*(2*k+3)*(4*k+7)*(4*k+9)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 14 2012
G.f. A(x) satisfies A(x^2) = F'(x)/F(x), where F(x) = C(x)/C(-x) and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, May 15 2023
From R. J. Mathar, Jul 11 2024: (Start)
D-finite with recurrence n*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0.
a(n) = 2*A002458(n).
G.f.: 2* 2F1(3/4,5/4; 3/2 ; 16*x).
Conjecture: A000265(a(n)) = A063079(n+1), odd part of a(n). (End)
a(n) / (2*n+2) = A024492(n). - R. J. Mathar, Jul 12 2024

Extensions

More terms from Emeric Deutsch, Dec 20 2004

A382394 a(n) = Sum_{k=0..n} A128899(n,k)^3.

Original entry on oeis.org

1, 1, 9, 190, 5705, 204876, 8209278, 354331692, 16140234825, 765868074400, 37525317999884, 1886768082651816, 96906387191038334, 5066711735118128200, 268954195756648761900, 14464077426547576156440, 786729115199980286001225, 43219452658242723841261800
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2025

Keywords

Comments

Let b_k(n) = Sum_{j=0..n} A128899(n,j)^k. b_1(n) = binomial(2*n-1,n) = A088218(n) and b_2(n) = A024492(n-1) for n > 0.

Crossrefs

Programs

  • PARI
    a128899(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2);
    a(n) = sum(k=0, n, a128899(n, k)^3);

Formula

a(n) = binomial(2*n,n)/2 * A183069(n) for n > 0.
a(n) = A003161(2*n-1) for n > 0.

A133603 The matrix-vector product A133566 * A000108.

Original entry on oeis.org

1, 1, 3, 5, 19, 42, 174, 429, 1859, 4862, 21658, 58786, 266798, 742900, 3417340, 9694845, 45052515, 129644790, 607283490, 1767263190, 8331383610, 24466267020, 115948830660, 343059613650, 1632963760974, 4861946401452
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133602 is a companion sequence.

Examples

			a(5) = C(5) = 42.
a(6) = 174 = C(6) + C(5) = 132 + 42.
		

Crossrefs

Cf. A133566, A000108, A133602, A024492 (bisection).

Programs

Formula

A133566 * A000108 where A133566 = an infinite lower triangular matrix and A000108 = the Catalan sequence. For odd n, a(n) = C(n). For even n, a(n) = C(n) + C(n-1) = A005807(n-1).
Conjecture: n*(n-2)*(3*n-1)*(n+1)*a(n) -8*n*(2*n-3)*a(n-1) -4*(n-1)*(3*n+2)*(
2*n-3)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Jun 20 2015

A234040 a(n) = binomial(2*(n+1),n) * gcd(n,2)/(2*(n+1)).

Original entry on oeis.org

1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, 58786, 104006, 742900, 1337220, 9694845, 17678835, 129644790, 238819350, 1767263190, 3282060210, 24466267020, 45741281820, 343059613650, 644952073662, 4861946401452, 9183676536076, 69533550916004
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2014

Keywords

Comments

This gives the next-to-central entries of the even-indexed rows of the triangle A107711.
For the central entries (of the even-numbered rows) see A001700.
This sequence is composed of the bisection sequences A024492 (even part) and A065097 (odd part).

Crossrefs

Programs

  • Magma
    [Binomial(2*(n+1),n)*Gcd(n,2)/(2*(n+1)): n in [0..30]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    Table[Binomial[2 (n + 1), n] GCD[n, 2]/(2 (n + 1)), {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2014 *)

Formula

a(n) = binomial(2*(n+1),n)*gcd(n,2)/(2*(n+1)) for n >= 0.
a(n) = A107711(2*(n+1), n) for n >= 0.
G.f.: (3*c(x)- c(-x)-2)/(4*x) =(4*(1-x) - 3*sqrt(1-4*x) - sqrt(1+4*x))/(8*x^2), with c(x) the o.g.f. of the Catalan numbers A000108. See the bisection comment above.

Extensions

a(26) from Vincenzo Librandi, Feb 25 2014

A276484 Decimal expansion of Sum_{k>=0} (2*k+2)/binomial(4*k+2, 2*k+1).

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 4, 6, 7, 1, 2, 1, 6, 7, 4, 2, 7, 1, 3, 9, 0, 9, 9, 2, 5, 8, 1, 0, 9, 3, 9, 7, 3, 5, 4, 6, 4, 8, 3, 1, 6, 8, 9, 4, 6, 3, 3, 8, 5, 8, 3, 4, 0, 8, 9, 4, 9, 0, 5, 4, 4, 7, 8, 3, 9, 3, 3, 3, 5, 3, 1, 7, 6, 4, 0, 5, 4, 1, 6, 9, 7, 8, 2, 1, 2, 1, 1, 8, 7, 7, 2, 0, 1, 8, 9, 0, 1, 7, 1, 5, 7, 1, 0, 0, 1, 3, 2, 0, 0, 1, 5, 2, 6, 5, 9, 6, 8, 6, 9, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Examples

			1.22636467121674271390992581093973546...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Pi(R)/(9*Sqrt(3)) + 6*(2*Sqrt(5)*Log((1+Sqrt(5))/2) + 15)/125; // G. C. Greubel, Nov 04 2018
  • Mathematica
    RealDigits[2 (Pi/(9 Sqrt[3])) + 6 ((2 Sqrt[5] Log[GoldenRatio] + 15)/125), 10, 120][[1]]
    RealDigits[HypergeometricPFQ[{1, 3/2, 2}, {3/4, 5/4}, 1/16], 10, 120][[1]]
  • PARI
    suminf(k=0,(2*k+2)/binomial(4*k+2,2*k+1)) \\ Indranil Ghosh, Mar 04 2017
    
  • PARI
    default(realprecision, 100); 2*Pi/(9*sqrt(3)) + 6*(2*sqrt(5)*log((1+sqrt(5))/2) + 15)/125 \\ G. C. Greubel, Nov 04 2018
    

Formula

Equals 2*Pi/(9*sqrt(3)) + 6*(2*sqrt(5)*log(phi) + 15)/125, where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/Catalan number(2k+1).
Equals Sum_{k>=0} 1/A000108(2k+1).
Equals Sum_{k>=0} 1/A024492(k).
Previous Showing 11-20 of 22 results. Next