A106268
Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
Offset: 0
Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
3, 1, 1;
10, 3, 1, 1;
35, 10, 3, 1, 1;
126, 35, 10, 3, 1, 1;
...
Production matrix begins:
1, 1;
2, 0, 1;
5, 0, 0, 1;
14, 0, 0, 0, 1;
42, 0, 0, 0, 0, 1;
132, 0, 0, 0, 0, 0, 1;
429, 0, 0, 0, 0, 0, 0, 1;
... - _Philippe Deléham_, Oct 02 2014
-
A106268:= func< n,k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >;
[A106268(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
-
T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
-
trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n,n-k)*(-1)^(n-k), ", ");); print(););} \\ Michel Marcus, Oct 03 2014
-
def A106268(n,k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k))
flatten([[A106268(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023
A121320
Number of vertices in all ordered (plane) trees with n edges that are at distance two from all the leaves above them.
Original entry on oeis.org
0, 0, 1, 2, 6, 18, 59, 203, 724, 2643, 9802, 36755, 138935, 528406, 2019419, 7748125, 29825844, 115132729, 445498768, 1727434607, 6710501025, 26110567532, 101744332967, 396983837719, 1550777652546, 6064476854065, 23739056348161
Offset: 0
a(4)=6 since the root has the distance two property for the trees uudduudd and uudududd. There are similar points at height 1 for uuududdd, uuudddud and uduuuddd. The distance two point is at height 2 for uuuudddd.
-
CoefficientList[Series[x^2(1 + 1/Sqrt[1 - 4x])/(2(1 - x - x^2)), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 21 2006 *)
-
seq(n)={Vec(x^2*(1 + 1/sqrt(1 - 4*x + O(x^(n-1))))/(2 - 2*x - 2*x^2), -(n+1))} \\ Andrew Howroyd, Apr 06 2020
A122897
Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399
Offset: 0
Triangle begins
1,
1, 1,
1, 3, 1,
1, 8, 5, 1,
1, 22, 19, 7, 1,
1, 64, 67, 34, 9, 1,
1, 196, 232, 144, 53, 11, 1,
1, 625, 804, 573, 261, 76, 13, 1,
1, 2055, 2806, 2211, 1171, 426, 103, 15, 1,
1, 6917, 9878, 8399, 4979, 2126, 647, 134, 17, 1,
1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1
-
A122897 := proc (n, k)
binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k)
end proc:
for n from 0 to 10 do
seq(A122897(n, k), k = 0..n)
end do; # Peter Bala, Feb 21 2018
Original entry on oeis.org
1, 1, 2, 3, 5, 9, 15, 29, 50, 99, 176, 351, 638, 1275, 2354, 4707, 8789, 17577, 33099, 66197, 125477, 250953, 478193, 956385, 1830271, 3660541, 7030571, 14061141, 27088871, 54177741, 104647631, 209295261, 405187826, 810375651, 1571990936, 3143981871, 6109558586, 12219117171, 23782190486, 47564380971, 92705454896
Offset: 0
-
a:= func< n | n eq 0 select 1 else (1+(-1)^n)/2 + (&+[ (&+[ ((n-2*j)/(n-2*k))*Binomial(n-2*k, n-k-j) : k in [0..j]]) : j in [0..Floor((n-1)/2)]]) >;
[a(n): n in [0..45]]; // G. C. Greubel, Apr 30 2021
-
a[, 0]=1; a[n, n_]=1; a[n_, m_]:= a[n, m] = a[n-1, m] + a[n, m-1]; a[n_, m_] /; n<0 || m>n = 0; Table[ Sum[a[n-m, m], {m,0,n}], {n,0,45}] (* Jean-François Alcover, Dec 17 2012 *)
a[n_]:= a[n]= (1+(-1)^n)/2 + Sum[(n-2*j)*Binomial[n-2*k, n-k-j]/(n-2*k), {j,0,(n-1)/2}, {k,0,j}]; Table[a[n], {n,0,45}] (* G. C. Greubel, Apr 30 2021 *)
-
def a(n): return (1+(-1)^n)/2 + sum( sum( ((n-2*j)/(n-2*k))*binomial(n-2*k, n-k-j) for k in (0..j)) for j in (0..(n-1)//2))
[a(n) for n in (0..45)] # G. C. Greubel, Apr 30 2021
A360211
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k).
Original entry on oeis.org
1, 2, 5, 17, 61, 221, 812, 3021, 11344, 42899, 163146, 623320, 2390653, 9198879, 35494701, 137290466, 532149805, 2066501909, 8038146035, 31312535610, 122140123201, 477002869614, 1864912495716, 7298427590543, 28588888586743, 112080607196843, 439744801379594
Offset: 0
-
A360211 := proc(n)
add((-1)^k*binomial(2*n-3*k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360211(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-3*k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^2/(1+sqrt(1-4*x)))))
A371785
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-k,n-2*k).
Original entry on oeis.org
1, 3, 14, 76, 441, 2652, 16303, 101727, 641630, 4080154, 26112384, 167978615, 1085182436, 7035477777, 45750406205, 298279844724, 1949096816505, 12761551428024, 83701819019155, 549850618355886, 3617119500327536, 23824816811652905, 157106267803712709
Offset: 0
A371786
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(4*n-k,n-2*k).
Original entry on oeis.org
1, 4, 27, 209, 1716, 14553, 125971, 1105885, 9809019, 87691592, 788832045, 7131655908, 64743390321, 589808771881, 5389066722654, 49365637128655, 453212161425716, 4168951499299185, 38415242186255419, 354527945536409116, 3276414018301664025
Offset: 0
A371787
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(5*n-k,n-2*k).
Original entry on oeis.org
1, 5, 44, 441, 4675, 51129, 570401, 6451688, 73715212, 848793726, 9833394285, 114487194485, 1338411363535, 15700659542105, 184722993467063, 2178831068873601, 25756348168285379, 305061478075705411, 3619402085862708614, 43008294559624639777
Offset: 0
A101475
Triangle T(n,k) read by rows: number of lattice paths from (0,0) to (0,2n) with steps (1,1) or (1,-1) that stay between the lines y=0 and y=k.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 15, 19, 20, 35, 50, 63, 69, 70, 126, 176, 217, 243, 251, 252, 462, 638, 770, 870, 913, 923, 924, 1716, 2354, 2794, 3159, 3355, 3419, 3431, 3432, 6435, 8789, 10307, 11610, 12430, 12766, 12855, 12869, 12870, 24310, 33099, 38489
Offset: 0
Triangle begins
1;
1, 2;
3, 5, 6;
10, 15, 19, 20;
35, 50, 63, 69, 70;
126, 176, 217, 243, 251, 252;
462, 638, 770, 870, 913, 923, 924;
1716, 2354, 2794, 3159, 3355, 3419, 3431, 3432;
6435, 8789, 10307, 11610, 12430, 12766, 12855, 12869, 12870;
-
T[n_, k_] := Sum[Binomial[2n, n-i(k+2)] - Binomial[2n, n+i(k+2)+k+1], {i, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2019 *)
A382225
Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 73, 21, 1, 1, 21, 140, 273, 171, 31, 1, 1, 28, 266, 798, 871, 346, 43, 1, 1, 36, 462, 1974, 3321, 2306, 631, 57, 1, 1, 45, 750, 4326, 10377, 11126, 5335, 1065, 73, 1, 1, 55, 1155, 8646, 28017, 42878, 31795, 11145, 1693, 91, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 6, 7, 1;
1, 10, 25, 13, 1;
1, 15, 65, 73, 21, 1;
1, 21, 140, 273, 171, 31, 1;
...
-
T:= proc(n, k) option remember; `if`(n<0, 0,
T(n-1, k)+binomial(n-1, k-1)*binomial(n, k))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 20 2025
-
A382225[n_, k_] := A382225[n, k] = If[k == n, 1, A382225[n-1, k] + Binomial[n-1, k-1]*Binomial[n, k]];
Table[A382225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 22 2025 *)
-
h[i,j]:=binomial(i+j-3,i-1);
for n:1 thru 7 do
if n=1 then print([1])
else (M:genmatrix(h,n,n),
print(makelist(determinant(minor(M,k,k)),k,1,n))
);
Comments