cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 228 results. Next

A259176 Triangle read by rows T(n,k) in which row n lists the odd-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 1, 2, 5, 1, 2, 5, 2, 2, 6, 1, 1, 2, 6, 1, 1, 3, 7, 2, 1, 2, 7, 2, 1, 3, 8, 1, 2, 3, 8, 2, 1, 1, 3, 9, 2, 1, 1, 3, 9, 2, 1, 1, 4, 10, 2, 1, 2, 3, 10, 2, 1, 2, 4, 11, 2, 2, 1, 4, 11, 3, 1, 1, 1, 4, 12, 2, 1, 1, 2, 4, 12, 2, 1, 1, 2, 5, 13, 3, 1, 1, 2, 4, 13, 3, 2, 1, 1, 5, 14, 2, 2, 1, 2, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
2, 1;
3, 1;
3, 2;
4, 1, 1;
4, 1, 2;
5, 1, 2;
5, 2, 2;
6, 1, 1, 2;
6, 1, 1, 3;
7, 2, 1, 2;
7, 2, 1, 3;
8, 1, 2, 3;
8, 2, 1, 1, 3;
9, 2, 1, 1, 3;
...
Illustration of initial terms (side view of the pyramid):
Row   _
1    |_|_
2    |_ _|_
3    |_ _|_|_
4    |_ _ _|_|_
5    |_ _ _|_ _|_
6    |_ _ _ _|_|_|_
7    |_ _ _ _|_|_ _|_
8    |_ _ _ _ _|_|_ _|_
9    |_ _ _ _ _|_ _|_ _|_
10   |_ _ _ _ _ _|_|_|_ _|_
11   |_ _ _ _ _ _|_|_|_ _ _|_
12   |_ _ _ _ _ _ _|_ _|_|_ _|_
13   |_ _ _ _ _ _ _|_ _|_|_ _ _|_
14   |_ _ _ _ _ _ _ _|_|_ _|_ _ _|_
15   |_ _ _ _ _ _ _ _|_ _|_|_|_ _ _|_
16   |_ _ _ _ _ _ _ _ _|_ _|_|_|_ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259177.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|_
3                             _|_ _| |_|
4                           _|_ _ _| |_|_
5                         _|_ _ _|  _|_ _|
6                       _|_ _ _ _| |_| |_|_
7                     _|_ _ _ _|   |_| |_ _|
8                   _|_ _ _ _ _|  _|_| |_ _|_
9                 _|_ _ _ _ _|   |_ _|_  |_ _|
10              _|_ _ _ _ _ _|   |_| |_| |_ _|_
11            _|_ _ _ _ _ _|    _|_| |_| |_ _ _|
12          _|_ _ _ _ _ _ _|   |_ _| |_|   |_ _|_
13        _|_ _ _ _ _ _ _|     |_ _| |_|_  |_ _ _|
14      _|_ _ _ _ _ _ _ _|    _|_|  _|_ _| |_ _ _|_
15    _|_ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
16   |_ _ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259177. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
For the mirror see A259177 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259176[n_, k_] := f[n, 2*k-1]
    TableForm[Table[a259176[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259176[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k - 1);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();)  \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k - 1)
    for n in range(1, 11): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021

A326124 a(n) is the sum of all divisors of the first n positive even numbers.

Original entry on oeis.org

3, 10, 22, 37, 55, 83, 107, 138, 177, 219, 255, 315, 357, 413, 485, 548, 602, 693, 753, 843, 939, 1023, 1095, 1219, 1312, 1410, 1530, 1650, 1740, 1908, 2004, 2131, 2275, 2401, 2545, 2740, 2854, 2994, 3162, 3348, 3474, 3698, 3830, 4010, 4244, 4412, 4556, 4808, 4979, 5196, 5412, 5622, 5784, 6064, 6280
Offset: 1

Views

Author

Omar E. Pol, Jun 07 2019

Keywords

Comments

A326123(n)/a(n) converges to 3/5.
a(n) is also the total area of the terraces of the first n even-indexed levels of the stepped pyramid described in A245092.

Examples

			For n = 3 the first three positive even numbers are [2, 4, 6] and their divisors are [1, 2], [1, 2, 4], [1, 2, 3, 6] respectively, and the sum of these divisors is 1 + 2 + 1 + 2 + 4 + 1 + 2 + 3 + 6 = 22, so a(3) = 22.
		

Crossrefs

Programs

  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma, [seq(i,i=2..200,2)])); # Robert Israel, Jun 12 2019
  • Mathematica
    Accumulate@ DivisorSigma[1, Range[2, 110, 2]] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    terms(n) = my(s=0, i=0); for(k=1, n-1, if(i>=n, break); s+=sigma(2*k); print1(s, ", "); i++)
    /* Print initial 50 terms as follows: */
    terms(50) \\ Felix Fröhlich, Jun 08 2019
    
  • PARI
    a(n) = sum(k=1, 2*n, if (!(k%2), sigma(k))); \\ Michel Marcus, Jun 08 2019
    
  • Python
    from math import isqrt
    def A326124(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A024916(2n) - A326123(n).
a(n) ~ 5 * Pi^2 * n^2 / 24. - Vaclav Kotesovec, Aug 18 2021

A332533 a(n) = (1/n) * Sum_{k=1..n} floor(n/k) * n^k.

Original entry on oeis.org

1, 4, 15, 92, 790, 9384, 137326, 2397352, 48428487, 1111122360, 28531183329, 810554859732, 25239592620853, 854769763924104, 31278135039463245, 1229782938533709200, 51702516368332126932, 2314494592676172411516, 109912203092257573556274, 5518821052632117898282620
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2020

Keywords

Crossrefs

Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), A344817 (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), this sequence (q=n).

Programs

  • Magma
    A332533:= func< n | (&+[Floor(n/j)*n^(j-1): j in [1..n]]) >;
    [A332533(n): n in [1..40]]; // G. C. Greubel, Jun 27 2024
    
  • Maple
    seq(add(n^(k-1)*floor(n/k), k=1..n), n=1..60); # Ridouane Oudra, Mar 05 2023
  • Mathematica
    Table[(1/n) Sum[Floor[n/k] n^k, {k, 1, n}], {n, 1, 20}]
    Table[(1/n) Sum[Sum[n^d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
    Table[SeriesCoefficient[(1/(1 - x)) Sum[x^k/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 1, 20}]
  • PARI
    a(n) = sum(k=1, n, (n\k)*n^k)/n; \\ Michel Marcus, Feb 16 2020
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, n^(d-1))); \\ Seiichi Manyama, May 29 2021
    
  • SageMath
    def A332533(n): return sum((n//j)*n^(j-1) for j in range(1,n+1))
    [A332533(n) for n in range(1,41)] # G. C. Greubel, Jun 27 2024

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} x^k / (1 - n*x^k).
a(n) = (1/n) * Sum_{k=1..n} Sum_{d|k} n^d.
a(n) ~ n^(n-1). - Vaclav Kotesovec, May 28 2021
a(n) = (1/(n-1)) * Sum_{k=1..n} (n^floor(n/k) - 1), for n>=2. - Ridouane Oudra, Mar 05 2023

A259177 Triangle read by rows T(n,k) in which row n lists the even-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 3, 1, 1, 4, 2, 1, 4, 2, 1, 5, 2, 2, 5, 2, 1, 1, 6, 3, 1, 1, 6, 2, 1, 2, 7, 3, 1, 2, 7, 3, 2, 1, 8, 3, 1, 1, 2, 8, 3, 1, 1, 2, 9, 4, 1, 1, 2, 9, 3, 2, 1, 2, 10, 4, 2, 1, 2, 10, 4, 1, 2, 2, 11, 4, 1, 1, 1, 3, 11, 4, 2, 1, 1, 2, 12, 5, 2, 1, 1, 2, 12, 4, 2, 1, 1, 3, 13, 5, 1, 1, 2, 3, 13, 5, 2, 1, 2, 2, 14
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
1, 2;
1, 3;
2, 3;
1, 1, 4;
2, 1, 4;
2, 1, 5;
2, 2, 5;
2, 1, 1, 6;
3, 1, 1, 6;
2, 1, 2, 7;
3, 1, 2, 7;
3, 2, 1, 8;
3, 1, 1, 2, 8;
3, 1, 1, 2, 9;
...
Illustration of initial terms (side view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|
3                             _|_|_ _|
4                           _|_|_ _ _|
5                         _|_ _|_ _ _|
6                       _|_|_|_ _ _ _|
7                     _|_ _|_|_ _ _ _|
8                   _|_ _|_|_ _ _ _ _|
9                 _|_ _|_ _|_ _ _ _ _|
10              _|_ _|_|_|_ _ _ _ _ _|
11            _|_ _ _|_|_|_ _ _ _ _ _|
12          _|_ _|_|_ _|_ _ _ _ _ _ _|
13        _|_ _ _|_|_ _|_ _ _ _ _ _ _|
14      _|_ _ _|_ _|_|_ _ _ _ _ _ _ _|
15    _|_ _ _|_|_|_ _|_ _ _ _ _ _ _ _|
16   |_ _ _|_|_|_ _|_ _ _ _ _ _ _ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259176.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                  |_|_
2                                 _|_ _|_
3                                |_| |_ _|_
4                               _|_| |_ _ _|_
5                              |_ _|_  |_ _ _|_
6                             _|_| |_| |_ _ _ _|_
7                            |_ _| |_|   |_ _ _ _|_
8                           _|_ _| |_|_  |_ _ _ _ _|_
9                          |_ _|  _|_ _|   |_ _ _ _ _|_
10                        _|_ _| |_| |_|   |_ _ _ _ _ _|_
11                       |_ _ _| |_| |_|_    |_ _ _ _ _ _|_
12                      _|_ _|   |_| |_ _|   |_ _ _ _ _ _ _|_
13                     |_ _ _|  _|_| |_ _|     |_ _ _ _ _ _ _|_
14                    _|_ _ _| |_ _|_  |_|_    |_ _ _ _ _ _ _ _|_
15                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _|_
16                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259176. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
Mirror of A259176 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259177[n_, k_] := f[n, 2*k]
    TableForm[Table[a259177[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259177[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();) \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k)
    for n in range(1, 27): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021

A318742 a(n) = Sum_{k=1..n} floor(n/k)^3.

Original entry on oeis.org

1, 9, 29, 74, 136, 254, 382, 596, 833, 1173, 1505, 2057, 2527, 3209, 3921, 4856, 5674, 6928, 7956, 9474, 10882, 12608, 14128, 16506, 18369, 20797, 23141, 26129, 28567, 32259, 35051, 38963, 42483, 46675, 50435, 55904, 59902, 65156, 70092, 76460
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^3:k in [1..n]]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^3, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 3*DivisorSigma[1, k] + 3*DivisorSigma[2, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^3); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318742(n): return -(s:=isqrt(n))**4 + sum((q:=n//k)*(3*k*(k-1)+q**2+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A006218(n) - 3*A024916(n) + 3*A064602(n).
a(n) ~ zeta(3) * n^3.
G.f.: (1/(1 - x)) * Sum_{k>=1} (3*k*(k - 1) + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A353908 Decimal expansion of Pi^2/36.

Original entry on oeis.org

2, 7, 4, 1, 5, 5, 6, 7, 7, 8, 0, 8, 0, 3, 7, 7, 3, 9, 4, 1, 2, 0, 6, 9, 1, 9, 4, 4, 4, 1, 0, 0, 4, 1, 9, 8, 2, 0, 3, 1, 5, 8, 3, 1, 6, 8, 6, 7, 7, 9, 9, 7, 3, 9, 6, 2, 2, 5, 9, 3, 0, 3, 8, 2, 2, 8, 3, 3, 4, 5, 7, 8, 4, 0, 0, 5, 3, 3, 4, 7, 8, 9, 7, 2, 2, 7, 1, 4, 8, 3, 4, 3, 6, 6, 2, 6, 4, 5, 0, 8, 8, 4, 0, 0, 0, 7
Offset: 0

Views

Author

Omar E. Pol, May 10 2022

Keywords

Comments

Ratio between the volume of the stepped pyramid with an infinite number of levels described in A245092 and that of the circumscribed cube (see the first formula).
See also Vaclav Kotesovec's formula (2016) in A175254.
Volume shared by a sphere inscribed in a cube of volume Pi and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024

Examples

			0.2741556778080377394120691944410041982031583168677997396225930382283345784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi^2/36, 121);  # Alois P. Heinz, May 11 2022
  • Mathematica
    RealDigits[Pi^2/36, 10, 100][[1]] (* Amiram Eldar, May 11 2022 *)
  • PARI
    Pi^2/36
    
  • PARI
    zeta(2)/6

Formula

Equals lim_{n->oo} A175254(n)/n^3.
Equals A002388/36.
Equals A102753/18.
Equals A195055/12.
Equals A091476/9.
Equals A013661/6.
Equals A100044/4.
Equals A072691/3.
Equals A086463/2.
Equals A086729*2.
Equals A019673^2.
Equals Re(dilog((1+sqrt(3)*i)/2)). - Mohammed Yaseen, Jul 03 2024

A243980 Four times the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

4, 16, 32, 60, 84, 132, 164, 224, 276, 348, 396, 508, 564, 660, 756, 880, 952, 1108, 1188, 1356, 1484, 1628, 1724, 1964, 2088, 2256, 2416, 2640, 2760, 3048, 3176, 3428, 3620, 3836, 4028, 4392, 4544, 4784, 5008, 5368, 5536, 5920, 6096, 6432, 6744, 7032, 7224, 7720
Offset: 1

Views

Author

Omar E. Pol, Jun 18 2014

Keywords

Comments

Also number of "ON" cells at n-th stage in a structure which looks like a simple 2-dimensional cellular automaton (see example). The structure is formed by the reflection on the four quadrants from the diagram of the symmetry of sigma in the first quadrant after n-th stage, hence the area in each quadrant equals the area of each wedge and equals A024916(n); the sum of all divisors of all positive integers <= n. For more information about the diagram see A237593 and A237270.

Examples

			Illustration of the structure after 16 stages (contains 880 ON cells):
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[4*DivisorSigma[1,Range[50]]] (* Harvey P. Dale, May 13 2018 *)
  • Python
    from math import isqrt
    def A243980(n): return -(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))<<1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A016742(n) - 4*A004125(n) = 4*A024916(n).
a(n) = 2*(A006218(n) + A222548(n)) = 2*A327329(n). - Omar E. Pol, Sep 25 2019

A072379 Sum_{k<=n} (sigma(k)^2), where sigma(k) denotes the sum of the divisors of k A000203.

Original entry on oeis.org

1, 10, 26, 75, 111, 255, 319, 544, 713, 1037, 1181, 1965, 2161, 2737, 3313, 4274, 4598, 6119, 6519, 8283, 9307, 10603, 11179, 14779, 15740, 17504, 19104, 22240, 23140, 28324, 29348, 33317, 35621, 38537, 40841, 49122, 50566, 54166, 57302
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002

Keywords

Crossrefs

Programs

  • Maple
    A072379 := proc(n)
        add( numtheory[sigma](k)^2,k=0..n) ;
    end proc:
    seq(A072379(n),n=1..80) ; # R. J. Mathar, Jul 09 2024
  • Mathematica
    Accumulate[Table[DivisorSigma[1, k]^2, {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)^2) \\ Michel Marcus, Jun 20 2013

Formula

Ramanujan's asymptotic formula: (5/6)*Zeta(3)*n^3+O(n^2*log(n)^2)

A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.

Original entry on oeis.org

1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
		

Crossrefs

Compare with A049000. Note that a(n) = A049000(n) + A046915(n).
Cf. A000203 (sigma(n)), A072691 (Pi^2/12), A049000, A046915, A024916, A025281.

Programs

  • PARI
    for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
    
  • PARI
    A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
  • Python
    [(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
    
  • Python
    from math import isqrt
    def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
    

Formula

Asymptotic formula: a(n) ~ Pi^2/12 * 10^2n. See A072691 for Pi^2/12. Observe that A025281 also contains that constant in its asymptotic formula.

Extensions

More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008
Corrected by N. J. A. Sloane, Jun 08 2008, following suggestions from Don Reble and David W. Wilson

A244370 Total number of toothpicks after n-th stage in the toothpick structure of the symmetric representation of sigma in the four quadrants.

Original entry on oeis.org

8, 24, 48, 80, 112, 160, 200, 264, 328, 408, 464, 560, 624, 728, 832, 960, 1040, 1184, 1272, 1432, 1576, 1728, 1832, 2024, 2160, 2336, 2512, 2736
Offset: 1

Views

Author

Omar E. Pol, Jun 26 2014

Keywords

Comments

Partial sums of A244371.
If we use toothpicks of length 1/2, so the area of the central square is equal to 1. The total area of the structure after n-th stage is equal to A024916(n), the sum of all divisors of all positive integers <= n, hence the total area of the n-th set of symmetric regions added at n-th stage is equal to sigma(n) = A000203(n), the sum of divisors of n.
If we use toothpicks of length 1, so the number of cells (and the area) of the central square is equal to 4. The number of cells (and the total area) of the structure after n-th stage is equal to 4*A024916(n) = A243980(n), hence the number of cells (and the total area) of the n-th set of symmetric regions added at n-th stage is equal to 4*A000203(n) = A239050(n).

Examples

			Illustration of the structure after 16 stages (Contains 960 toothpicks):
.
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
		

Crossrefs

Formula

a(n) = 4*A244362(n) = 8*A244360(n).

Extensions

a(8) corrected and more terms from Omar E. Pol, Oct 18 2014
Previous Showing 51-60 of 228 results. Next