cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A250270 Products of terms of A003418.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 960, 1024, 1152, 1296, 1440, 1536, 1680, 1728, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456
Offset: 1

Views

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

Includes all factorials and Jordan-Polya numbers, since n! = Product_{i = 1..n} A003418(floor(n/i)) for positive n.

Examples

			720 = 2*6*60 = 12*60. Since 2, 6, 12 and 60 are all terms of A003418, 720 is a term of this sequence.
		

Crossrefs

Range of values of A253139. Subsequences include A000142, A001013, A001813, A025527, A064350, A166338, A250569.
Subsequence of A025487.

Programs

  • PARI
    f(n) = lcm(vector(n, i, i)); \\ A003418
    mul(x,y) = x*y;
    lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok,  nv = select(x->(xMichel Marcus, May 09 2021

A055377 a(n) = largest prime <= n/2.

Original entry on oeis.org

2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37
Offset: 4

Views

Author

Labos Elemer, Jun 22 2000; David W. Wilson, Jun 10 2005

Keywords

Comments

Also largest prime factor of any composite <= n. E.g., a(15) = 7 since 7 is the largest prime factor of {4,6,8,9,10,12,14,15}, the composites <= 15.
Also largest prime dividing A025527(n) = n!/lcm[1,...,n]. [Comment from Ray Chandler, Apr 26 2007: Primes > n/2 don't appear as factors of A025527(n) since they appear once in n! and again in the denominator lcm[1,...,n]. Primes <= n/2 appear more times in the numerator than the denominator so they appear in the fraction.]
a(n) is the largest prime factor whose exponent in the factorization of n! is greater than 1. - Michel Marcus, Nov 11 2018

Examples

			n = 10, n! = 3628800, lcm[1,...,10] = 2520, A025527(10) = 1440 = 32*9*5 so a(7) = 5 (offset = 3).
		

Crossrefs

Programs

Formula

a(n) = Max(gpf((n+2) mod k): 1 < k < (n+2) and k not prime), with gpf=A006530 (greatest prime factor). - Reinhard Zumkeller, Mar 27 2004
Where defined, that is for n > 2, a(A000040(n)) = A000040(A079952(n)). - Peter Munn, Sep 18 2017

Extensions

More terms from James Sellers, Jul 04 2000
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007

A081530 a(n) = running sum of the first n harmonic numbers, multiplied by the LCM of 1..n.

Original entry on oeis.org

1, 5, 26, 77, 522, 669, 5772, 13827, 48610, 55991, 699612, 785633, 11359222, 12530955, 13726712, 29889983, 550271934, 593094837, 12094689300, 12932216325, 13780828710, 14640022575, 356714770680, 376932115005, 1986818142426
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2003

Keywords

Comments

Consider triangle in A081525. Write terms in k-th row with denominator = LCM of terms in that row. Sequence gives sum of numerators of terms in n-th row.

Examples

			(1), 2*(1 + 3/2), 6*(1 + 3/2 + 11/6), 12*(1 + 3/2 + 11/6 + 25/12).
		

Crossrefs

Programs

  • Maple
    H:=n->add(1/i,i=1..n):seq((n+1)*ilcm(seq(j,j=1..n))*(H(n+1)-1),n=1..30); # C. Ronaldo
  • Mathematica
    Table[Sum[HarmonicNumber[k], {k, n}] LCM @@ Range[n], {n, 36}] (* Wouter Meeussen *)

Formula

a(n) = lcm(1..n)*(n+1)*(H(n+1)-1), where H(n) is the n-th harmonic number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Equal to A001705(n) / A025527(n). - Martin Fuller, Jan 03 2006

Extensions

More terms from Wouter Meeussen, Apr 13 2003

A025537 a(n) = (1/s(1) + 1/s(2) + ... + 1/s(n+1)) * LCM{1, 2, ..., n}, where s(k) = LCM{1,2,...,k}/k = A002944(k).

Original entry on oeis.org

1, 2, 5, 17, 35, 181, 182, 1278, 2559, 7687, 7688, 84580, 84581, 1099567, 1099582, 1099590, 2199181, 37386095, 37386096, 710335844, 710335865, 710335887, 710335888, 16337725448, 16337725453, 81688627291, 81688627300, 245065881928, 245065881929
Offset: 0

Views

Author

Keywords

Examples

			n=4: LCM{1,2,3,4} = 12, so a(4) = 12*(1/1 + 1/1 + 1/2 + 1/3 + 1/12) = 12*35/12 = 35. - _N. J. A. Sloane_, Sep 04 2019
		

Crossrefs

Programs

  • PARI
    s(n) = lcm([1..n])/n; \\ A002944
    a(n) = lcm([1..n])*sum(k=1, n+1, 1/s(k)); \\ Michel Marcus, Sep 04 2019

Formula

a(n) = A003418(n) * Sum_{k=1..n+1} 1/A002944(k). - Sean A. Irvine, Sep 04 2019

Extensions

Name improved by Sean A. Irvine, Sep 04 2019 and N. J. A. Sloane, Sep 04 2019

A205958 a(0) = 1 and a(n) = A180000(n)*a(floor(n/2))^2 for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 48, 16, 40, 40, 270, 270, 945, 63, 129024, 129024, 64512, 64512, 2016000, 96000, 528000, 528000, 144342000, 28868400, 187644600, 20849400, 1787836050, 1787836050, 59594535, 59594535, 3999321544458240, 121191561953280, 1030128276602880
Offset: 0

Views

Author

Peter Luschny, Feb 04 2012

Keywords

Comments

lcm(1,2,..,n) = (n!*a(n)) / ((n/2)!*a(n/2))^2.
lcm(1,2,..,n)*a(n) is a divisor of n! and n!/(lcm(1,2,..,n)*a(n)) is a square.

Crossrefs

Programs

A244656 Least product of consecutive positive integers which is divisible by each of 1, 2, ..., n.

Original entry on oeis.org

2, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 55440, 55440, 360360, 360360, 360360, 2162160, 85765680, 85765680, 33522128640, 33522128640, 33522128640, 33522128640, 19275223968000, 19275223968000, 19275223968000
Offset: 1

Views

Author

Rick L. Shepherd, Jul 03 2014, Sep 14 2014

Keywords

Comments

For n > 1, clearly a(n) is bounded below by lcm(1,2,...,n) and bounded above by n!. Further, a(n) is a positive multiple of lcm(1,2,...,n). Any product of two or more consecutive positive integers may be expressed as m!/k!, where 0 <= k <= m-2. For this sequence, the m corresponding to a(n) may or may not be a multiple of n. Whenever a(n) can be expressed as the product of exactly two consecutive integers, it is a term of A002378. See the a-file link for further comments.

Examples

			a(7) = 20*21 = 21!/19! = 420 because 420 is divisible by 1, 2, 3, 4, 5, 6, and 7, and no positive integer less than 420 is divisible by each of these. Here, 420 = lcm(1,2,3,4,5,6,7). 420 is an oblong (or promic) number (A002378).
a(11) = 7*8*9*10*11 = 11!/6! = 55440. Here, 27720 = lcm(1,2,3,4,5,6,7,8,9,10,11), but 27720 cannot be represented as a product of consecutive positive integers.
a(31) = 6081487775*6081487776 = 36984493563555938400, also a promic number.
		

Crossrefs

Programs

  • PARI
    {a(n) =
    local(L, M, i, k = 0, s = 0, ret = 0, d, divs2,
       st, pr, prt = 1); /* Use prt = 0 to suppress printing. */
    if(n < 1, return, if(n < 3, ret = 2,
    L = lcm(vector(n, i, i));
    M = n!/L;
    while(k < M,
       k++;
       s += L; d = divisors(s); divs2 = #d \ 2;
       st = 2; pr = d[st];
       i = 0;
       while(st + i <= divs2,
          if(d[st + i + 1] == d[st + i] + 1,
             pr *= d[st + i + 1]; i++;
             if(pr == s,
                if(prt,
                   print1("k*L = ", k, "*", L, " = ",
                     s, " = ", d[st], "*");
                   if(d[st + i] > d[st] + 2, print1("...*"),
                     if(d[st + i] == d[st] + 2,
                       print1(d[st] + 1, "*")));
                   print(d[st + i], " = ", d[st + i], "!/",
                     d[st] - 1, "!"));
                ret = s; break(2),
                if(pr > s, st++; pr = d[st]; i = 0)),
             if(pr < s, st += i + 1, st++); pr = d[st]; i = 0)))));
    return(ret)}

A059955 a(n) = floor( prime(n)!/lcm(1..prime(n)) ) modulo prime(n).

Original entry on oeis.org

1, 2, 5, 10, 3, 10, 4, 3, 28, 17, 18, 30, 20, 41, 42, 14, 19, 30, 37, 63, 50, 7, 12, 83, 30, 91, 19, 69, 91, 97, 56, 22, 80, 39, 137, 44, 9, 154, 19, 37, 141, 141, 168, 126, 183, 200, 205, 136, 55, 95, 204, 126, 213, 230, 68, 63, 158, 202, 162, 102, 182, 104, 38, 165
Offset: 2

Views

Author

Lekraj Beedassy, Mar 13 2001

Keywords

Comments

a(n) gives also the smallest coefficient for which the multiple M of lcm(1 through p(n)-1) satisfies p(n) divides M + 1. This computes the solution of the puzzle requiring the smallest number such that grouping in 2's, 3's, etc. up to the n-th prime,all leave a remainder of one except the last which leaves no remainder.

Examples

			a(2)=1 because prime(2)=3 and floor(3!/lcm(1,2,3)) mod 3 = 1 mod 3 = 1;
a(3)=2 because prime(3)=5 and floor(5!/lcm(1,2,3,4,5)) mod 5 = 2 mod 5 = 2;
a(4)=5 because prime(4)=7 and floor(7!/lcm(1,2,3,4,5,6,7)) mod 7 = 12 mod 7 = 5;
a(7)=10 because prime(7)=17 and floor(17!/lcm(1,2,...,17)) mod 17 = 29030400 mod 17 = 10.
		

Crossrefs

Programs

  • Magma
    [Floor( Factorial(p)/Lcm([1..p]) ) mod p: p in PrimesInInterval(3,400)]; // Bruno Berselli, Feb 08 2015
  • Maple
    for n from 2 to 150 do printf(`%d,`, floor(ithprime(n)!/ilcm(i $ i=1..ithprime(n))) mod ithprime(n) ); od:

Extensions

More terms from James Sellers, Mar 15 2001

A175455 a(n) = H(n) * (lcm(1,2,...,n))^2, where H(n) = harmonic numbers (1/1 + 1/2 + ... + 1/n).

Original entry on oeis.org

1, 6, 66, 300, 8220, 8820, 457380, 1917720, 17965080, 18600120, 2320468920, 2384502120, 412970037480, 422245703880, 430902992520, 1756076802480, 516336630329520, 524676485052720, 192260441419366320, 194970060218934000, 197550649551855600, 200013939369644400
Offset: 1

Views

Author

Jaroslav Krizek, May 17 2010

Keywords

Examples

			For n = 3, a(3) = (1/1 + 1/2 + 1/3) * (1*2*3)^2 = (11/6) * 36 = 66.
		

Crossrefs

Programs

  • PARI
    a(n)={sum(k=1, n, 1/k)*lcm([1..n])^2} \\ Andrew Howroyd, Jan 08 2020

Formula

a(n) = (A001008(n) / A002805(n)) * (A003418(n))^2.
a(n) = A000142(n) * A025529(n) / A025527(n) = A025529(n) * A003418(n).
a(n) = (1/1 + 1/2 + ... + 1/n) * (lcm(1,2,...,n))^2.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Jan 08 2020

A216915 T(n, k) = Product{1<=j<=n, gcd(j,k)=1 | j} / lcm{1<=j<=n, gcd(j,k)=1 | j} for n >= 0, k >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 48, 1, 2, 1, 2, 1, 1, 1, 1, 144, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1, 17280, 3, 80
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(n,k) = Product(R(n,k))/lcm(R(n,k)) where R(n,k) is the set of all integers up to n that are relatively prime to k.
T(n,k) = A216919(n,k)/A216917(n,k).

Examples

			   k |n=0  1  2  3  4  5  6  7  8   9   10
  ---+------------------------------------
   1 |  1  1  1  1  2  2 12 12 48 144 1440
   2 |  1  1  1  1  1  1  1  1  1   3    3
   3 |  1  1  1  1  2  2  2  2  8   8   80
   4 |  1  1  1  1  1  1  1  1  1   3    3
   5 |  1  1  1  1  2  2 12 12 48 144  144
   6 |  1  1  1  1  1  1  1  1  1   1    1
   7 |  1  1  1  1  2  2 12 12 48 144 1440
   8 |  1  1  1  1  1  1  1  1  1   3    3
   9 |  1  1  1  1  2  2  2  2  8   8   80
  10 |  1  1  1  1  1  1  1  1  1   3    3
  11 |  1  1  1  1  2  2 12 12 48 144 1440
  12 |  1  1  1  1  1  1  1  1  1   1    1
  13 |  1  1  1  1  2  2 12 12 48 144 1440
		

Programs

  • Sage
    def A216915(n, k):
        def R(n, k): return [j for j in (1..n) if gcd(j, k) == 1]
        return mul(R(n,k))/lcm(R(n, k))
    for k in (1..13): [A216915(n, k) for n in (0..10)]

Formula

For n > 0:
A(n,1) = A025527(n);
A(4,n) = A000034(n);
A(n,n) = A128247(n).

A093627 a(n) = lcm(1,2,3,...,n) * (sum of Farey fractions of order n).

Original entry on oeis.org

1, 3, 15, 42, 330, 390, 3990, 9660, 36540, 41580, 595980, 651420, 10630620, 11711700, 13153140, 29189160, 594233640, 630990360, 14083949880, 15015120120, 16411875480, 17575838280, 463140798120, 484557713640, 2690500012200
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Table[LCM @@ Range[n] Plus @@ Farey[n], {n, 26}]

Formula

a(n) = A093593(n)/A025527(n).
Previous Showing 11-20 of 20 results.