cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A112809 Positions of records in A110566.

Original entry on oeis.org

1, 6, 20, 21, 42, 120, 342, 506, 567, 594, 600, 610, 2184, 4896, 6108, 6162, 6498, 12760, 14067, 14157, 14201, 93942, 123462, 123519, 734413, 2451397, 4591010, 11571129, 13346540, 13619348, 13619790, 46180567
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, n]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(n, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Extensions

a(27)-a(28) from Amiram Eldar, Dec 18 2018
a(29)-a(31) from Chai Wah Wu, Mar 08 2021
a(32) from Chai Wah Wu, Mar 14 2021

A120263 Ratio of the numerator of n*HarmonicNumber[n] to the numerator of HarmonicNumber[n]: A096617(n)/A001008(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 26 2006

Keywords

Comments

a(n) is not equal to 1 when n belongs to A074791 - numbers n such that n does not divide the denominator of the n-th harmonic number.
a(n) is almost always equal to 1 except for n=6,18,20,21,33,42,54,.. when a(n) seems to be equal to a prime divisor of n.
a(n) could be equal to a squared prime divisor of n as for n=100,294,500,847,..

Crossrefs

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n))/Numerator(HarmonicNumber(n)): n in [1..100]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Numerator[Table[n*Sum[1/i,{i,1,n}],{n,1,500}]]/Numerator[Table[Sum[1/i,{i,1,n}],{n,1,500}]]
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,100, print1(numerator(n*h(n))/numerator(h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    

Formula

a(n) = A096617(n)/A001008(n) = numerator[n*Sum[1/i,{i,1,n}]] / numerator[Sum[1/i,{i,1,n}]].
a(n) = n / gcd(denominator(H(n)),n), where H(n) = sum(1/k, k=1..n). [Gary Detlefs, Sep 05 2011]
a(n) = A096617(n)*A110566(n)/A025529(n). [Arkadiusz Wesolowski, Mar 29 2012]

A120435 Triangle read by rows: T(n,k) = lcm(1,2,3,4,...,n)/k (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 6, 3, 2, 12, 6, 4, 3, 60, 30, 20, 15, 12, 60, 30, 20, 15, 12, 10, 420, 210, 140, 105, 84, 70, 60, 840, 420, 280, 210, 168, 140, 120, 105, 2520, 1260, 840, 630, 504, 420, 360, 315, 280, 2520, 1260, 840, 630, 504, 420, 360, 315, 280, 252, 27720, 13860, 9240
Offset: 1

Views

Author

Leroy Quet, Jul 15 2006

Keywords

Comments

T(n,1) = A003418(n). Row sums yield A025529. - Emeric Deutsch, Jul 24 2006

Examples

			Triangle starts:
   1;
   2,  1;
   6,  3,  2;
  12,  6,  4,  3;
  60, 30, 20, 15, 12;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then lcm(seq(j,j=1..n))/k else 0 fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form); # Emeric Deutsch, Jul 24 2006
  • Python
    from math import lcm
    def A120435(maxrow):
        A,rlcm = [],1
        for n in range(1,maxrow+1):
            rlcm = lcm(n,rlcm)
            A.append(list(rlcm//k for k in range(1,n+1)))
        return A # John Tyler Rascoe, Nov 08 2024

Extensions

More terms from Emeric Deutsch, Jul 24 2006

A175455 a(n) = H(n) * (lcm(1,2,...,n))^2, where H(n) = harmonic numbers (1/1 + 1/2 + ... + 1/n).

Original entry on oeis.org

1, 6, 66, 300, 8220, 8820, 457380, 1917720, 17965080, 18600120, 2320468920, 2384502120, 412970037480, 422245703880, 430902992520, 1756076802480, 516336630329520, 524676485052720, 192260441419366320, 194970060218934000, 197550649551855600, 200013939369644400
Offset: 1

Views

Author

Jaroslav Krizek, May 17 2010

Keywords

Examples

			For n = 3, a(3) = (1/1 + 1/2 + 1/3) * (1*2*3)^2 = (11/6) * 36 = 66.
		

Crossrefs

Programs

  • PARI
    a(n)={sum(k=1, n, 1/k)*lcm([1..n])^2} \\ Andrew Howroyd, Jan 08 2020

Formula

a(n) = (A001008(n) / A002805(n)) * (A003418(n))^2.
a(n) = A000142(n) * A025529(n) / A025527(n) = A025529(n) * A003418(n).
a(n) = (1/1 + 1/2 + ... + 1/n) * (lcm(1,2,...,n))^2.

Extensions

Terms a(13) and beyond from Andrew Howroyd, Jan 08 2020

A187064 Coefficients in numerator polynomial of: Sum (k=1 to n) of x^k/(1-x^k).

Original entry on oeis.org

1, 2, 1, 3, 4, 3, 1, 4, 5, 7, 5, 3, 1, 5, 11, 19, 24, 26, 22, 16, 9, 4, 1, 6, 7, 15, 18, 23, 21, 21, 15, 11, 6, 3, 1, 7, 15, 32, 52, 77, 99, 120, 128, 130, 119, 102, 79, 57, 36, 21, 10, 4, 1, 8, 17, 36, 58, 93, 125, 165, 193, 220, 229, 231, 213, 191, 157, 124
Offset: 1

Views

Author

Mats Granvik, Mar 07 2011

Keywords

Comments

The number of elements per row begins: 1,2,4,6,10,12,18,... which appears to be A002088.
Row sums begin: 1,3,11,25,137,147,1089,... which appears to be A025529.

Examples

			Table begins:
1,
2,1,
3,4,3,1,
4,5,7,5,3,1,
5,11,19,24,26,22,16,9,4,1,
6,7,15,18,23,21,21,15,11,6,3,1,
7,15,32,52,77,99,120,128,130,119,102,79,57,36,21,10,4,1,
Polynomials begin:
-(1*x^1)/(x^1-1)
-(2*x^2+1*x)/(x^2-1)
-(3*x^4+4*x^3+3*x^2+1*x^1)/(x^4+x^3-x^1-1)
-(4*x^6+5*x^5+7*x^4+5*x^3+3*x^2+1*x^1)/(x^6+x^5+x^4-x^2-x^1-1)
		

Programs

  • PARI
    row(n) = v = Vec(numerator(sum(k=1, n, x^k/(1-x^k)))); for (k=1, #v-1, print1(abs(v[k]), ", ")); /*print*/; \\ Michel Marcus, Jun 11 2014

Extensions

More terms from Michel Marcus, Jun 11 2014

A309556 Composite numbers m such that m divides Sum_{k=1..m-1} (lcm(1,2,...,(m-1)) / k)^2.

Original entry on oeis.org

52781, 782957, 1395353, 2602439
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Aug 07 2019

Keywords

Comments

Composites m such that m | H_2(m-1) * lcm(1^2,2^2,...,(m-1)^2), where H_2(m) = 1/1^2 + 1/2^2 + ... + 1/m^2.
By Wolstenholme's theorem, if p > 3 is a prime, then p divides the numerator of H_2(p-1) and thus H_2(p-1) * lcm(1,2^2,...,(p-1)^2) == 0 (mod p). This sequence is formed by the pseudoprimes that are solutions of this congruence.
a(5) > 10^7 if it exists.

Crossrefs

Cf. A007406, A007407, A025529 (see our comment), A051418.

Programs

  • Mathematica
    s = 0; c = 1; n = 1; seq = {}; Do[s += 1/n^2; c = LCM[c, n^2]; n++; If[CompositeQ[n] && Divisible[s*c, n], AppendTo[seq, n]], {2 * 10^6}]; seq

A331343 a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.

Original entry on oeis.org

0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jan 14 2020

Keywords

Comments

By Wolstenholme's theorem, if p > 3 is a prime, then p^3 | a(p).
Conjecture: for n > 3, if n^3 | a(n), then n is prime. If so, there are no such pseudoprimes.
Problem: are there weak pseudoprimes m such that m^2 | a(m)? None up to 5*10^4.
Composite numbers m such that m | a(m) are 9, 25, 49, 99, 121, 125, 169, 221, 289, 343, 357, 361, 399, 529, 665, 841, 961, 1331, 1369, 1443, 1681, 1849, 2183, ... Cf. A082180.
Prime numbers p such that p^4 | a(p) are probably only the Wolstenholme primes A088164.

Crossrefs

Programs

  • Magma
    [Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
    
  • Mathematica
    a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
  • PARI
    a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020

Formula

a(n) = A003418(n) * A330718(n) / A330719(n).

A379561 a(n) = A003418(n+1)*H(n), where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number.

Original entry on oeis.org

2, 9, 22, 125, 137, 1029, 2178, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 813635157, 825887397, 837527025, 848612385, 19761458895, 19994251455, 101086721625, 102157567401, 309561680403, 312536252003, 9146733078187
Offset: 1

Views

Author

Miko Labalan, Dec 26 2024

Keywords

Comments

abs(log(a(n)) - n - log(log(n))) < c*sqrt(n)*log(n)^(-1/2), where constant c = (2+A206431)*Pi/4. This also gives the upper bound of the squared error, (log(a(n)) - n - log(log(n)))^2 < (c^2)*n*log(n)^(-1).
A slightly better absolute error bound could be achieved by using the imaginary part of the nontrivial zeros of the Riemann zeta function, (zetazero(n)-1/2)/sqrt(-1) ~ (2*Pi)*n*LambertW(n/exp(1))^(-1). That bound would be, abs(log(a(n)) - n - log(log(n))) < sqrt(k)*sqrt(n)*LambertW(n/exp(1))^(-1/2), where constant k = 4*Pi/(1+2*A206431). This also gives the upper bound of the squared error, (log(a(n)) - n - log(log(n)))^2 < k*n*LambertW(n/exp(1))^(-1). The midline of the squared error would run along (4/(4+A206431))*n*LambertW(n/exp(1))^(-1).
Another slightly better absolute error bound but without relying on the properties of the zeta zeros would be, abs(log(a(n)) - n - log(log(n))) < n^(3/(9-10*A077761)).
log(a(n))-c*sqrt(n)*log(n)^(-1/2) is a lower bound of sigma_1(n) = A000203(n). Such that, n+log(log(n))-c*sqrt(n)*log(n)^(-1/2) < sigma_1(n) < H(n)+exp(H(n))*log(H(n)).
a(n) gives the total number of ordered pairs (k,m) where k in set {1,2,...,n}, m in set {1,2,...,A003418(n+1)}, and k divides m. Example: For n = 3, there are 22 ordered pairs (k,m) where k is {1,2,3} and m is a multiple of k up to 12. For k = 1, every m is a multiple of 1, m is {1,2,3,4,5,6,7,8,9,10,11,12} so there are 12 pairs. For k = 2, every m is a multiple of 2, m is {2,4,6,8,10,12} so there are 6 pairs. For k = 3, every m is a multiple of 3, m is {3,6,9,12} so there are 4 pairs. So the total ordered pairs is 12 + 6 + 4 = 22 = a(3). Each ordered pair (k,m) also represents an edge in a bipartite graph. Counting all such pairs gives the total number of edges in a graph.

Examples

			a(n)/A025558(n) = [ 2/1, 9/4, 22/9, 125/48, 137/50, 1029/360, 2178/735, ... ]
To evaluate the integral:
For n = 1: Integral_{x=0..1} Li_1(x^(1/2))/x^(1/2) dx = Integral_{x=0..1} -log(1-x^(1/2))/x^(1/2) dx = -2 * -(Sum_{x=1..oo} 1/(x*(x+1))) = -2 * -1 = 2.
For n = 2: Integral_{x=0..1} Li_1(x^(1/3))/x^(1/3) dx = Integral_{x=0..1} -log(1-x^(1/3))/x^(1/3) dx = -3 * -(Sum_{x=1..oo} 1/(x*(x+2))) = -3 * -((1/2)*(1+1/2)) = -3 * -3/4 = 9/4.
For n = 3: Integral_{x=0..1} Li_1(x^(1/4))/x^(1/4) dx = Integral_{x=0..1} -log(1-x^(1/4))/x^(1/4) dx = -4 * -(Sum_{x=1..oo} 1/(x*(x+3))) = -4 * -((1/3)*(1+1/2+1/3)) = -4 * -11/18 = 22/9.
		

Crossrefs

Cf. A001008/A002805 (harmonic numbers).
Cf. A003418 (lcm).
Cf. A025558 (denominator).
Cf. A193758 (very similar sequence).

Programs

  • PARI
    a(n) = lcm(vector(n+1, i, i))*sum(i=1, n, 1/i); \\ Michel Marcus, Dec 28 2024

Formula

a(n) = A025558(n)*(Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx).
a(n) = A025558(n) + A027457(n+1).
Integral_{x=0..1} Li_1(x^(1/(n+1)))/x^(1/(n+1)) dx = ((n+1)/n)*H(n) = a(n)/A025558(n).
((n+1)/n)*H(n) ~ log(n) + gamma + (log(n)+gamma+1/2)/n + O(1/n^2).
log(a(n)) ~ n + log(log(n)) + O(c*sqrt(n)*log(n)^(-1/2)), (See comments for constant c).
G.f. for ((n+1)/n)*H(n): G(x) = Li_2(x)+(1/2)*log(1-x)^2-log(1-x)/(1-x), the lim_{x->oo} G(x) = -zeta(2).
Hyperbolic l.g.f. for ((n+1)/n)*H(n): LH(x) = Li_2(x)+(1/2)*log(1-x)^2+Li_3(x)-Li_3(1-x)+Li_2(1-x)*log(1-x)+(1/2)*log(x)*log(1-x)^2+zeta(3), the Integral_{x=0..1} LH(x) dx = 2*zeta(3) = A152648.
Dirichlet g.f. for ((n+1)/n)*H(n): zeta(s+1)*(zeta(s)+zeta(s+2)).
Previous Showing 11-18 of 18 results.