A092318
a(n) = smallest m such that value of odd harmonic series Sum_{j=0..m} 1/(2j+1) is >= n.
Original entry on oeis.org
0, 7, 56, 418, 3091, 22845, 168803, 1247297, 9216353, 68100150, 503195828, 3718142207, 27473561357, 203003686105, 1500005624923, 11083625711270, 81897532160124, 605145459495140, 4471453748222756, 33039822589391675
Offset: 1
Cf.
A281355 (= a(n) + 1) for a variant.
A350669
Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
Original entry on oeis.org
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
Offset: 0
-
[Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
-
[numerator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
A350670
Denominators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..100
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions. p. 258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], p. 258.
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Comparison to A025547 using Plot 2.
-
[Denominator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1))): n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
With[{H=HarmonicNumber}, Table[Denominator[2*H[2n+2] -H[n+1]], {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = denominator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
-
[denominator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1)) for n in range(41)] # G. C. Greubel, Jul 24 2023
A025549
a(n) = (2n-1)!!/lcm{1,3,5,...,2n-1}.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 3, 45, 45, 45, 945, 945, 4725, 42525, 42525, 42525, 1403325, 49116375, 49116375, 1915538625, 1915538625, 1915538625, 86199238125, 86199238125, 603394666875, 30773128010625, 30773128010625, 1692522040584375, 96473756313309375, 96473756313309375
Offset: 1
Cf.
A196274 (run lengths of equal terms).
-
seq(doublefactorial(2*n-1)/lcm(seq((2*k-1), k=1..n)), n=1..27) ; # Johannes W. Meijer, Jun 08 2009
-
L[ {x___} ] := LCM[ x ]; Table[ (2n-1)!!/L[ Range[ 1, 2n-1, 2 ] ], {n, 1, 50} ]
(* Second program: *)
Array[#!!/LCM @@ Range[1, #, 2] &[2 # - 1] &, 30] (* Michael De Vlieger, Feb 19 2019 *)
-
a(n) = (((2*n)!/n!)/2^n)/lcm(vector(n, i, 2*i-1)); \\ Michel Marcus, Dec 02 2014
A167577
The second column of the ED3 array A167572.
Original entry on oeis.org
1, 11, 83, 741, 8169, 106107, 1592235, 27062325, 514246545, 10798366635, 248374594755, 6209158112325, 167651197407225, 4861802228946075, 150717766502187675, 4973638859450709525, 174078640829054894625
Offset: 1
Equals the second column of the ED3 array
A167572.
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
Table[(1/2)*(-1)^n*(2*n - 5)!!*((4*n^2 - 6*n - 2) + (16*n^3 - 24*n^2 - 4*n + 6)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1,50}] (* G. C. Greubel, Jun 16 2016 *)
A167578
The third column of the ED3 array A167572.
Original entry on oeis.org
1, 17, 183, 2043, 26529, 398025, 6765975, 128556675, 2699661825, 62092533825, 1552309291575, 41912411683275, 1215458905032225, 37679245697871225, 1243414695550433175, 43519523831289457875, 1610222144582102522625
Offset: 1
Equals the third column of the ED3 array
A167572.
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
Table[(1/4)*(-1)^(n)*(2*n - 7)!!*((8*n^4 - 20*n^3 - 22*n^2 + 55*n + 12) + (32*n^5 - 80*n^4 - 80*n^3 + 200*n^2 + 18*n - 45)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 16 2016 *)
A051426
Least common multiple of {2, 4, 6, ..., 2n}.
Original entry on oeis.org
2, 4, 12, 24, 120, 120, 840, 1680, 5040, 5040, 55440, 55440, 720720, 720720, 720720, 1441440, 24504480, 24504480, 465585120, 465585120, 465585120, 465585120, 10708457760, 10708457760, 53542288800, 53542288800, 160626866400, 160626866400, 4658179125600
Offset: 1
a(3) = lcm{2,4,6} = 12;
a(7) = lcm{2,4,6,8,10,12,14} = 840.
- A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000 (but beware errors).
-
a051426 n = foldl lcm 1 [2,4..2*n] -- Reinhard Zumkeller, Apr 25 2011
-
SZ={2};n=2;L=2;Do[L=LCM[L,2n];AppendTo[SZ,L];n++,{99}];SZ (* Zak Seidov, Aug 01 2009 *)
Table[LCM@@Range[2,2n,2],{n,30}] (* Harvey P. Dale, Oct 09 2011 *)
-
a(n)=2*lcm([1..n]) \\ Charles R Greathouse IV, Oct 28 2016
a(6), a(7) and a(8) corrected by
T. D. Noe, Feb 08 2008
Corrected the example, which did not reflect the sequence values provided. - Michael Davies (mykdavies+oeis(AT)gmail.com), Oct 10 2008
A092317
a(n) = smallest odd number 2m+1 such that the partial sum Sum_{j=0..m} 1/(2j+1) of the odd harmonic series is >= n.
Original entry on oeis.org
1, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351
Offset: 1
A164655
Numerators of partial sums of Theta(3) = Sum_{j>=1} 1/(2*j-1)^3.
Original entry on oeis.org
1, 28, 3527, 1213136, 32797547, 43684790932, 96017087247229, 96044168328256, 471956397645187853, 3237597973008257555852, 462561506842656976961, 5628425850334528955928112, 703596058798919360293439483, 18998011529681231695738912916, 463360571051954739540899597748949
Offset: 1
Rationals Theta(3,n): [1, 28/27, 3527/3375, 1213136/1157625, 32797547/31255875, 43684790932/41601569625, ...].
-
r[n_] := Sum[1/(2*j-1)^3, {j, 1, n}]; (* or r[n_] := (PolyGamma[2, n+1/2] - PolyGamma[2, 1/2])/16 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
A164656
Numerators of partial sums of Theta(5) = sum( 1/(2*j-1)^5, j=1..infinity ).
Original entry on oeis.org
1, 244, 762743, 12820180976, 3115356499043, 501734380891571068, 186290962962179367466549, 186291207179611798681792, 264507060005034822095008296869, 654945930087597102815813733559637156, 654946089730308117005814730177159031, 4215458332009996232497953858159263996273008
Offset: 1
Rationals Theta(5,n): [1, 244/243, 762743/759375, 12820180976/12762815625, 3115356499043/3101364196875,...].
-
r[n_] := Sum[1/(2*j-1)^5, {j, 1, n}]; (* or r[n_] := (PolyGamma[4, n+1/2] - PolyGamma[4, 1/2])/768 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 02 2013 *)
Comments