cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 81 results. Next

A255528 G.f.: Product_{k>=1} 1/(1+x^k)^k.

Original entry on oeis.org

1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).

Programs

  • Maple
    with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k,{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
    for(n=0, 100, print1(a(n), ", "))

Formula

a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A248882 Expansion of Product_{k>=1} (1+x^k)^(k^3).

Original entry on oeis.org

1, 1, 8, 35, 119, 433, 1476, 4962, 16128, 51367, 160105, 490219, 1476420, 4378430, 12805008, 36962779, 105417214, 297265597, 829429279, 2291305897, 6270497702, 17008094490, 45744921052, 122052000601, 323166712109, 849453194355, 2217289285055, 5749149331789
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n) option remember; add(
          (-1)^(n/d+1)*d^4, d=numtheory[divisors](n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^3),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 06 2017
    

Formula

a(n) ~ Zeta(5)^(1/10) * 3^(1/5) * exp(2^(-11/5) * 3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) * n^(4/5)) / (2^(71/120) * 5^(2/5)* sqrt(Pi) * n^(3/5)), where Zeta(5) = A013663.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 4*x^k + x^(2*k))/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 30 2018
Euler transform of A309335. - Georg Fischer, Nov 10 2020

A266891 Expansion of Product_{k>=1} (1 + k*x^k)^k.

Original entry on oeis.org

1, 1, 4, 13, 29, 81, 188, 456, 1030, 2405, 5295, 11611, 25246, 53552, 113332, 235685, 486011, 990840, 2006567, 4018010, 7992003, 15768511, 30875424, 60060509, 116042548, 222817961, 425200270, 806991037, 1522748592, 2858792520, 5339457208, 9924370365
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 50; s = 1+x; Do[s*=Sum[Binomial[k, j] * k^j * x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 07 2016 *)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*(-d)^(1+n/d). - Seiichi Manyama, Nov 18 2017
Conjecture: log(a(n)) ~ n^(2/3) * (2*log(3*n) - 3) / (4*3^(1/3)). - Vaclav Kotesovec, May 08 2018

A262736 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, 1, 0, 3, 3, 5, 8, 10, 22, 25, 41, 57, 88, 126, 168, 261, 351, 512, 685, 984, 1357, 1865, 2566, 3485, 4838, 6459, 8832, 11831, 16056, 21404, 28660, 38259, 50875, 67613, 89161, 118184, 155321, 204609, 267708, 351125, 458331, 597740, 777590, 1010020, 1310390
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3^(4/3) * (Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * Zeta(3)^(1/6) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)).

A078306 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^2.

Original entry on oeis.org

1, 3, 10, 11, 26, 30, 50, 43, 91, 78, 122, 110, 170, 150, 260, 171, 290, 273, 362, 286, 500, 366, 530, 430, 651, 510, 820, 550, 842, 780, 962, 683, 1220, 870, 1300, 1001, 1370, 1086, 1700, 1118, 1682, 1500, 1850, 1342, 2366, 1590, 2210, 1710, 2451, 1953
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^2, {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Apr 17 2014 *)
    Table[CoefficientList[Series[-Log[Product[1/(x^k + 1)^k, {k, 1, 90}]], {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^2); \\ Michel Marcus, Jul 06 2016
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**2 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^2*x^n/(1+x^n).
Multiplicative with a(2^e) = (2*4^e+1)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2.
L.g.f.: -log(Product_{ k>0 } 1/(x^k+1)^k) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^n*(1 + x^n)/(1 - x^n)^3. - Peter Bala, Jan 14 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 4. (End)

A255835 G.f.: Product_{k>=1} (1+x^k)^(2*k-1).

Original entry on oeis.org

1, 1, 3, 8, 15, 34, 67, 133, 255, 486, 901, 1649, 2984, 5312, 9373, 16342, 28221, 48283, 81928, 137858, 230278, 381919, 629156, 1029933, 1675856, 2711288, 4362575, 6983196, 11122327, 17630798, 27820283, 43706461, 68375137, 106534093, 165340844, 255643289
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) - Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2 * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018

A219555 Number of bipartite partitions of (i,j) with i+j = n into distinct pairs.

Original entry on oeis.org

1, 2, 4, 10, 19, 38, 73, 134, 242, 430, 749, 1282, 2171, 3622, 5979, 9770, 15802, 25334, 40288, 63560, 99554, 154884, 239397, 367800, 561846, 853584, 1290107, 1940304, 2904447, 4328184, 6422164, 9489940, 13967783, 20480534, 29920277, 43557272, 63194864
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2012

Keywords

Examples

			a(2) = 4: [(2,0)], [(1,1)], [(1,0),(0,1)], [(0,2)].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
           b(n-i*j, min(n-i*j, i-1))*binomial(i+1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Sep 19 2019
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k+1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 07 2015 *)

Formula

a(n) = Sum_{i+j=n} [x^i*y^j] 1/2 * Product_{k,m>=0} (1+x^k*y^m).
G.f.: Product_{k>=1} (1+x^k)^(k+1). - Vaclav Kotesovec, Mar 07 2015
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (1296*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * 3^(4/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(2 - x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Aug 11 2018

A026011 Expansion of Product_{m>=1} (1 + q^m)^(2*m).

Original entry on oeis.org

1, 2, 5, 14, 30, 68, 145, 298, 600, 1182, 2280, 4318, 8064, 14824, 26917, 48292, 85675, 150466, 261762, 451328, 771739, 1309362, 2205109, 3687904, 6127155, 10116074, 16602508, 27093582, 43974355, 71003224
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ Zeta(3)^(1/6) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018

A262878 Expansion of Product_{k>=1} (1+x^(3*k-1))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 2, 3, 0, 4, 4, 1, 10, 5, 6, 16, 6, 14, 28, 10, 32, 40, 18, 63, 60, 42, 112, 83, 84, 187, 124, 172, 300, 186, 320, 456, 302, 581, 684, 507, 982, 1004, 874, 1624, 1476, 1508, 2566, 2174, 2582, 3981, 3262, 4338, 6002, 4945, 7138, 8947, 7660
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

In general, if s>0, t>0, GCD(s,t)=1 and g.f. = Product_{k>=1} (1 + x^(s*k-t))^k then a(n) ~ 2^(t^2/(2*s^2) - 3/4) * s^(2/3) * Zeta(3)^(1/6) * exp(-Pi^4 * t^2 / (1296 * s^2 * Zeta(3)) + Pi^2 * t * 2^(1/3) * 3^(2/3) * s^(2/3) * n^(1/3) / (36 * s^2 * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2^(4/3) * s^(2/3)) ) / (3^(1/3) * s * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 12 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= n-> `if`(n<3, n-1, (p-> [0, -r, 2*r, 0, 0, 2*r+1][p]
             )(1+irem(n+3, 6, 'r'))):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^(3k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax=100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^(2*j)/(1-x^(3j))^2,{j,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(2^(-4/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(5/3)*3^(8/3) * Zeta(3)^(1/3)) - Pi^4/(11664*Zeta(3))) * Zeta(3)^(1/6) / (2^(25/36) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A027346 Expansion of Product_{m>=1} (1 + q^m)^(3*m).

Original entry on oeis.org

1, 3, 9, 28, 72, 183, 443, 1026, 2313, 5072, 10860, 22767, 46862, 94806, 188886, 371068, 719493, 1378449, 2611540, 4896291, 9090651, 16723930, 30501744, 55177932, 99048719, 176500572, 312330813, 549033172
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A277938.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)

Formula

a(n) ~ exp(2^(-4/3) * 3^(5/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(11/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018
Previous Showing 11-20 of 81 results. Next