cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A027285 a(n) = Sum_{k=0..2*n-3} T(n,k) * T(n,k+3), with T given by A026584.

Original entry on oeis.org

12, 116, 682, 4908, 30272, 201648, 1273286, 8275894, 52783298, 340392020, 2180905198, 14035736838, 90149817980, 580197442656, 3732734480794, 24041345351898, 154874693823022, 998441294531516, 6439238635990250, 41552345665859196, 268252644944872486
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}];
    Table[a[n], {n, 3, 40}] (* G. C. Greubel, Dec 15 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    @CachedFunction
    def A027285(n): return sum(T(n,j)*T(n, j+3) for j in (0..2*n-3))
    [A027285(n) for n in (3..40)] # G. C. Greubel, Dec 15 2021

Formula

a(n) = Sum_{k=0..2*n-3} A026584(n,k) * A026584(n,k+3).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A159612 INVERT transform of (1, 3, 1, 3, 1, ...).

Original entry on oeis.org

1, 4, 8, 24, 56, 152, 376, 984, 2488, 6424, 16376, 42072, 107576, 275864, 706168, 1809624, 4634296, 11872792, 30409976, 77901144, 199541048, 511145624, 1309309816, 3353892312, 8591131576, 22006700824, 56371227128, 144398030424, 369882938936, 947475060632, 2427006816376
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2009

Keywords

Comments

The sequence 1,1,4,8,24,... is an eigensequence of the sequence triangle of 1,3,1,3,1,3,1,..., which is the Riordan array ((1+3x)/(1-x^2),x). - Paul Barry, Feb 10 2011
From Sean A. Irvine, Jun 07 2025: (Start)
Also, the number of walks of length n-1 starting at vertex 1 in the following graph:
0 2
|\ /|
| 1 |
|/ \|
4 3. (End)

Examples

			a(4) = 24 = (1, 3, 1, 3) dot (8, 4, 1, 1) = (8 + 12, + 1 + 3).
		

Crossrefs

Cf. A026597 (vertices 0, 2, 3, 4), A384604 (missing edge {0,4}).

Programs

Formula

G.f.: x*(1+3*x)/(1-x-4*x^2). - Philippe Deléham, Mar 01 2012
a(n) = a(n-1) + 4*a(n-2), a(1)=1, a(2)=4. - Vincenzo Librandi, Mar 11 2011
a(n+1) = Sum_{k=0..n} A119473(n,k)*3^k. - Philippe Deléham, Oct 05 2012
a(n) = 2^(-3-n)*((1-sqrt(17))^n*(-5+3*sqrt(17)) + (1+sqrt(17))^n*(5+3*sqrt(17))) / sqrt(17) for n > 0. - Colin Barker, Dec 22 2016
a(n) = A006131(n)+3*A006131(n-1). - R. J. Mathar, Jun 07 2025
E.g.f.: (exp(x/2)*(51*cosh(sqrt(17)*x/2) + 5*sqrt(17)*sinh(sqrt(17)*x/2)) - 51)/68. - Stefano Spezia, Jun 07 2025

A103631 Triangle read by rows: T(n,k) = abs(qStirling2(n,k,q)) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 2, 1, 0, 1, 1, 4, 3, 3, 1, 0, 1, 1, 5, 4, 6, 3, 1, 0, 1, 1, 6, 5, 10, 6, 4, 1, 0, 1, 1, 7, 6, 15, 10, 10, 4, 1, 0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1
Offset: 0

Views

Author

Paul Barry, Feb 11 2005

Keywords

Comments

Previous name: An invertible triangle whose row sums are F(n+1).
Triangle inverse has general term (-1)^(n-k)*binomial(floor(n/2),n-k). Diagonal sums are A103632.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 08 2005
Row sums are Fibonacci numbers (A000045).
Another version of triangle in A065941. - Philippe Deléham, Jan 01 2009
From Johannes W. Meijer, Aug 11 2011: (Start)
The T(n,k) coefficients appear in appendix 2 of Parks's remarkable article "A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov" if we assume that the b(r) coefficients are all equal to 1; see the second Maple program.
The T(n,k) triangle is related to a linear (n+1)-th order differential equation with coefficients a(n,k), see triangle A194005.
Parks's triangle appears to be an appropriate name for the triangle given above. (End)

Examples

			From _Paul Barry_, Oct 02 2009: (Start)
Triangle begins:
  1,
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 2, 1,
  0, 1, 1, 3, 2,  1,
  0, 1, 1, 4, 3,  3,  1,
  0, 1, 1, 5, 4,  6,  3,  1,
  0, 1, 1, 6, 5, 10,  6,  4, 1,
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1
Production matrix is:
  0, 1,
  0, 1, 1,
  0, 0, 0, 1,
  0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 1,
  0, 0, 0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (End)
		

Crossrefs

Cf. A103633 (signed version).

Programs

  • Haskell
    a103631 n k = a103631_tabl !! n !! k
    a103631_row n = a103631_tabl !! n
    a103631_tabl = [1] : [0,1] : f [1] [0,1] where
       f xs ys = zs : f ys zs where
         zs = zipWith (+)  ([0,0] ++ xs)  (ys ++ [0])
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    /* As triangle: */ [[Binomial(Floor((2*n-k-1)/2), n-k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Aug 28 2016
    
  • Maple
    From Johannes W. Meijer, Aug 11 2011: (Start)
    A103631 := proc(n,k): binomial(floor((2*n-k-1)/2),n-k) end: seq(seq(A103631(n,k), k=0..n), n=0..12);
    nmax:=12: for n from 0 to nmax+1 do b(n):=1 od: A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1) elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1) elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end: for n from 0 to nmax do seq(A103631(n,k), k=0..n) od: seq(seq(A103631(n,k),k=0..n), n=0..nmax); # (End)
  • Mathematica
    p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x; p[x, 2] = x + x^2; p[x_, n_] := p[x, n] = p[x, n - 1] + x^2*p[x, n - 2]; (* with *) Table[ExpandAll[p[x, n]], {n, 0, 10}]; (* or *) a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 27 2008 *)
    Table[Binomial[Floor[(2*n - k - 1)/2], n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k - 1) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[Abs[qStirling2[n, k, -1]], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([abs(q_stirling_number2(n,k).substitute(q=-1)) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

T(n,k) = binomial(floor((2*n-k-1)/2), n-k).
A polynomial recursion which produces this triangle: p(x, n) = p(x, n - 1) + x^2*p(x, n - 2). - Roger L. Bagula, Apr 27 2008
Sum_{k=0..n} T(n,k)*x^k = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jun 12 2009
G.f.: (1+(y-1)*x)/(1-x-y^2*x^2). - Philippe Deléham, Mar 09 2012
T(n,k) = T(n-1,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 09 2012

Extensions

New name from Peter Luschny, Mar 09 2020

A026581 Expansion of (1 + 2*x) / (1 - x - 4*x^2).

Original entry on oeis.org

1, 3, 7, 19, 47, 123, 311, 803, 2047, 5259, 13447, 34483, 88271, 226203, 579287, 1484099, 3801247, 9737643, 24942631, 63893203, 163663727, 419236539, 1073891447, 2750837603, 7046403391, 18049753803, 46235367367, 118434382579, 303375852047, 777113382363
Offset: 0

Views

Author

Keywords

Comments

T(n,0) + T(n,1) + ... + T(n,2n), T given by A026568.
Row sums of Riordan array ((1+2x)/(1+x),x(1+2x)/(1+x)). Binomial transform is A055099. - Paul Barry, Jun 26 2008
Equals row sums of triangle A153341. - Gary W. Adamson, Dec 24 2008
Also, the number of walks of length n starting at vertex 0 in the graph with 4 vertices and edges {{0,1}, {0,2}, {0,3}, {1,2}, {2,3}}. - Sean A. Irvine, Jun 02 2025

Crossrefs

Programs

  • GAP
    a:=[1,3];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    I:=[1,3]; [n le 2 select I[n] else Self(n-1) +4*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+2x)/(1-x-4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{1,4},{1,3},30] (* Harvey P. Dale, Aug 04 2015 *)
  • PARI
    Vec((1+2*x)/(1-x-4*x^2) + O(x^30)) \\ Colin Barker, Dec 22 2016
    
  • Sage
    ((1+2*x)/(1-x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: (1 + 2*x) / (1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), n>1.
a(n) = 2*A006131(n-1) + A006131(n), n>0.
a(n) = (2^(-1-n)*((1-sqrt(17))^n*(-5+sqrt(17)) + (1+sqrt(17))^n*(5+sqrt(17))))/sqrt(17). - Colin Barker, Dec 22 2016

Extensions

Edited by Ralf Stephan, Jul 20 2013

A285397 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 3; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 26, 646, 15818, 385822, 9401330, 229023958, 5578844858, 135894050926, 3310204057250, 80632220390758, 1964094376340522, 47842741143064894, 1165385872796078546, 28387257791866411894, 691476036231391881242, 16843441238514542846350, 410283940250387099210114
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.906...

Crossrefs

Programs

  • Magma
    I:=[1, 26, 646]; [n le 3 select I[n] else 32*Self(n-1) - 195*Self(n-2) + 216*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    LinearRecurrence[{32, -195, 216}, {1, 26, 646}, 18]
  • PARI
    Vec((1 - 3*x)^2 / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    def A285397_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-6*x+9*x^2)/(1-32*x+195*x^2-216*x^3) ).list()
    A285397_list(40) # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 26, a(2) = 646, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3).
G.f.: (1-6*x+9*x^2)/(1-32*x+195*x^2-216*x^3).

A285398 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 19, 452, 10948, 266300, 6484372, 157936172, 3847025764, 93707895260, 2282596837492, 55601016789068, 1354367059315396, 32990588541122684, 803607076375862356, 19574804963320797548, 476816346057854861860, 11614615234500986326556, 282916657894827156657460
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.906...

Crossrefs

Programs

  • Magma
    I:=[19, 452, 10948]; [1] cat [n le 3 select I[n] else 32*Self(n-1) - 195*Self(n-2) + 216*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    {1}~Join~LinearRecurrence[{32, -195, 216}, {19, 452, 10948}, 17]
  • PARI
    Vec((1 - x)*(1 - 3*x)*(1 - 9*x) / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    def A285398_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3) ).list()
    A285398_list(40) # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 19, a(2) = 452, a(3) = 10948, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3).
G.f.: (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3).

A285399 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 2; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 13, 182, 2548, 35672, 499408, 6991712, 97883968, 1370375552, 19185257728, 268593608192, 3760310514688, 52644347205632, 737020860878848, 10318292052303872, 144456088732254208, 2022385242251558912, 28313393391521824768, 396387507481305546752
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.402...

Crossrefs

Programs

  • Magma
    [1] cat [13*14^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
  • Maple
    A285399:=n->13*14^(n-1): 1,seq(A285399(n), n=1..30); # Wesley Ivan Hurt, Apr 23 2017
  • Mathematica
    {1}~Join~LinearRecurrence[{14}, {13}, 18]
  • PARI
    Vec((1-x) / (1-14*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    [1]+[13*14^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 13, a(n) = 14*a(n-1).
G.f.: (1-x)/(1-14*x).
a(n) = 13 * 14^(n-1) for n>0. - Colin Barker, Apr 23 2017
E.g.f.: (1 + 13*exp(14*x))/14. - G. C. Greubel, Dec 09 2021

A285400 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 3; a(n) is the number of cells after n iterations.

Original entry on oeis.org

1, 18, 378, 7938, 166698, 3500658, 73513818, 1543790178, 32419593738, 680811468498, 14297040838458, 300237857607618, 6304995009759978, 132404895204959538, 2780502799304150298, 58390558785387156258, 1226201734493130281418, 25750236424355735909778
Offset: 0

Views

Author

Peter Karpov, Apr 23 2017

Keywords

Comments

Cell configuration converges to a fractal with dimension 2.771...

Crossrefs

Programs

  • Magma
    [1] cat [18*21^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
  • Mathematica
    {1}~Join~LinearRecurrence[{21}, {18}, 17]
  • PARI
    Vec((1-3*x) / (1-21*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
    
  • Sage
    [1]+[18*21^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
    

Formula

a(0) = 1, a(1) = 18, a(n) = 21*a(n-1).
G.f.: (1-3*x)/(1-21*x).
a(n) = 2 * 3^(n+1) * 7^(n-1) for n>0. - Colin Barker, Apr 23 2017
E.g.f.: (1 + 6*exp(21*x))/7. - G. C. Greubel, Dec 09 2021

A122995 Expansion of x*(1+4*x)/(1-x-25*x^2).

Original entry on oeis.org

1, 5, 30, 155, 905, 4780, 27405, 146905, 832030, 4504655, 25305405, 137921780, 770556905, 4218601405, 23482524030, 128947559155, 716010659905, 3939699638780, 21839966136405, 120332457105905, 666331610516030, 3674643038163655, 20332933301064405, 112199009255155780
Offset: 1

Views

Author

Roger L. Bagula, Sep 22 2006

Keywords

Comments

The sequence can also be generated by adding of the top-row elements of the (n-1)st power of the matrix [[0,1],[1,1/5]] and multiplying with 5^(n-1).

Crossrefs

Cf. A026597.

Programs

  • Mathematica
    M := {{0, 1}, {1, 1/5}}; v[1] = {1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[v[n][[1]]*5^(n - 1), {n, 1, 30}]
    LinearRecurrence[{1,25},{1,5},30] (* Harvey P. Dale, Mar 11 2017 *)
  • PARI
    Vec(x*(1+4*x)/(1-x-25*x^2) + O(x^30)) \\ Michel Marcus, Jan 28 2015

Formula

a(n) = a(n-1)+25*a(n-2). [Philippe Deléham, Mar 26 2009]
a(n) = A122999(n-1) + 4*A122999(n-2). [R. J. Mathar, Aug 12 2009]
a(n) = (1/2+9*sqrt(101)/202)*(1/2+sqrt(101)/2)^(n-1) + (1/2-9*sqrt(101)/202)*(1/2-sqrt(101)/2)^(n-1). [Antonio Alberto Olivares, Jun 07 2011]

Extensions

Replaced definition by a specific one - The Assoc. Eds. of the OEIS, Jun 07 2010
More terms from Michel Marcus, Jan 28 2015

A180168 a(n) = 2*a(n-1) + 5*a(n-2), a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 11, 37, 129, 443, 1531, 5277, 18209, 62803, 216651, 747317, 2577889, 8892363, 30674171, 105810157, 364991169, 1259033123, 4343022091, 14981209797, 51677530049, 178261109083, 614909868411, 2121125282237, 7316799906529, 25239226224243, 87062451981131
Offset: 0

Views

Author

Gary W. Adamson, Aug 14 2010

Keywords

Examples

			a(5) = 443 = 2*a(4) + 5*a(3) = 2*129 + 5*37.
Using the INVERT operation, a(4) = 129 = (38, 14, 6, 2, 1) dot (1, 1, 3, 11, 37)
= (38 + 14 + 18 + 22 + 37); where A026597 = (1, 2, 6, 14, 38, 94,...).
		

Crossrefs

Cf. A026597.

Programs

  • Mathematica
    LinearRecurrence[{2, 5}, {1, 3}, 50] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    x='x+O('x^25); Vec((1 + x)/(1 - 2*x - 5*x^2)) \\ G. C. Greubel, Feb 18 2017

Formula

G.f.: (1 + x)/(1 - 2*x - 5*x^2).
Equals INVERT transform of A026597: (1, 2, 6, 14, 38, 94,...).
a(n) = (1/6)*( -(1-sqrt(6))^n*sqrt(6) + sqrt(6)*(1+sqrt(6))^n + 3*(1-sqrt(6))^n + 3*(1 +sqrt(6))^n ). - Alexander R. Povolotsky, Aug 15 2010
a(n) = A176812(n)/3 = A002532(n) + A002532(n+1). - R. J. Mathar, Oct 11 2011
Previous Showing 21-30 of 42 results. Next