A026807
Triangular array T read by rows: T(n,k) = number of partitions of n in which every part is >=k, for k=1,2,...,n.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 7, 2, 1, 1, 1, 11, 4, 2, 1, 1, 1, 15, 4, 2, 1, 1, 1, 1, 22, 7, 3, 2, 1, 1, 1, 1, 30, 8, 4, 2, 1, 1, 1, 1, 1, 42, 12, 5, 3, 2, 1, 1, 1, 1, 1, 56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1, 77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1, 101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 135, 34, 13
Offset: 1
Sum_{k>=1} y^k*(-1+1/Product_{i>=0} (1-x^(k+i))) = y*x+(2*y+y^2)*x^2+(3*y+y^2+y^3)*x^3+(5*y+2*y^2+y^3+y^4)*x^4+(7*y+2*y^2+y^3+y^4+y^5)*x^5+...
Triangle starts: - _Jason Kimberley_, Feb 05 2012
1;
2, 1;
3, 1, 1;
5, 2, 1, 1;
7, 2, 1, 1, 1;
11, 4, 2, 1, 1, 1;
15, 4, 2, 1, 1, 1, 1;
22, 7, 3, 2, 1, 1, 1, 1;
30, 8, 4, 2, 1, 1, 1, 1, 1;
42, 12, 5, 3, 2, 1, 1, 1, 1, 1;
56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1;
77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1;
101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1;
From _Tilman Piesk_, Feb 20 2016: (Start)
n = 12, k = 4, t = A000217(k-1) = 6
vp = A000041(n..n-t) = A000041(12..6) = (77, 56, 42, 30, 22, 15, 11)
vc = A231599(k-1, 0..t) = A231599(3, 0..6) = (1,-1,-1, 0, 1, 1,-1)
T(12, 4) = vp * transpose(vc) = 77-56-42+22+15-11 = 5
(End)
- Alois P. Heinz, Rows n = 1..141, flattened
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g
- Tilman Piesk, Table for n = 1..30, table for n = 2..150 without values 1, illustrations of columns n = 2, 3, 4, 5, 6, 7, 8
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: this sequence (triangle); columns of this sequence:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3),
A008484 (g=4),
A185325(g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. -
Jason Kimberley, Feb 05 2012
-
import Data.List (tails)
a026807 n k = a026807_tabl !! (n-1) !! (k-1)
a026807_row n = a026807_tabl !! (n-1)
a026807_tabl = map
(\row -> map (p $ last row) $ init $ tails row) a002260_tabl
where p 0 _ = 1
p _ [] = 0
p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
-- Reinhard Zumkeller, Dec 01 2012
-
T:= proc(n, k) option remember;
`if`(k<1 or k>n, 0, `if`(n=k, 1, T(n, k+1) +T(n-k, k)))
end:
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Mar 28 2012
-
T[n_, k_] := T[n, k] = If[ k<1 || k>n, 0, If[n == k, 1, T[n, k+1] + T[n-k, k]]]; Table [Table[ T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
-
from see_there import a231599_row # A231599
from sympy.ntheory import npartitions # A000041
def a026807(n, k):
if k > n:
return 0
elif k > n/2:
return 1
else:
vc = a231599_row(k-1)
t = len(vc)
vp_range = range(n-t, n+1)
vp_range = vp_range[::-1] # reverse
r = 0
for i in range(0, t):
r += vc[i] * npartitions(vp_range[i])
return r
# Tilman Piesk, Feb 21 2016
A185325
Number of partitions of n into parts >= 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168, 2464, 2809, 3189, 3627, 4112, 4673
Offset: 0
2-regular simple graphs with girth at least 5:
A185115 (connected),
A185225 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3),
A008484 (g=4), this sequence (g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9).
Not necessarily connected k-regular simple graphs with girth at least 5:
A185315 (any k),
A185305 (triangle); specified degree k: this sequence (k=2),
A185335 (k=3).
-
p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
A185325 := func;
[A185325(n):n in[0..60]];
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+5): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
-
seq(coeff(series(1/mul(1-x^(m+5), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
-
Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Length[p]]], {n, 40}], 3] (* Clark Kimberling, Feb 27 2014 *)
CoefficientList[Series[1/QPochhammer[x^5, x], {x, 0, 70}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+5))) \\ G. C. Greubel, Nov 03 2019
-
def A185325_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+5)) for m in (0..80)) ).list()
A185325_list(70) # G. C. Greubel, Nov 03 2019
A124943
Table read by rows: number of partitions of n with k as low median.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 2, 0, 0, 1, 6, 3, 1, 0, 0, 1, 8, 4, 2, 0, 0, 0, 1, 11, 6, 3, 1, 0, 0, 0, 1, 15, 8, 4, 2, 0, 0, 0, 0, 1, 20, 12, 5, 3, 1, 0, 0, 0, 0, 1, 26, 16, 7, 4, 2, 0, 0, 0, 0, 0, 1, 35, 22, 10, 5, 3, 1, 0, 0, 0, 0, 0, 1, 45, 29, 14, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 58, 40, 19, 8, 5, 3, 1
Offset: 1
For the partition [2,1^2], the sole middle element is 1, so that is the low median. For [3,2,1^2], the two middle elements are 1 and 2; the low median is the smaller, 1.
First 8 rows:
1
1 1
2 0 1
3 1 0 1
4 2 0 0 1
6 3 1 0 0 1
8 4 2 0 0 0 1
11 6 3 1 0 0 0 1
From _Gus Wiseman_, Jul 09 2023: (Start)
Row n = 8 counts the following partitions:
(71) (62) (53) (44) . . . (8)
(611) (521) (431)
(5111) (422) (332)
(4211) (3221)
(41111) (2222)
(3311) (22211)
(32111)
(311111)
(221111)
(2111111)
(11111111)
(End)
The high version of this triangle is
A124944.
The rank statistic for this triangle is
A363941, high version
A363942.
A version for mean instead of median is
A363945, rank statistic
A363943.
A high version for mean instead of median is
A363946, rank stat
A363944.
A008284 counts partitions by length (or decreasing mean), strict
A008289.
A360005(n)/2 returns median of prime indices.
-
Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 2)/2]]] &, IntegerPartitions[#]]] &, Range[13]] (* Peter J. C. Moses, May 14 2019 *)
A026797
Number of partitions of n in which the least part is 4.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889
Offset: 1
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]:
A026794 (triangle); chosen g:
A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden),
A026796 (g=3), this sequence (g=4),
A026798 (g=5),
A026799 (g=6),
A026800 (g=7),
A026801 (g=8),
A026802 (g=9),
A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 4:
A198314 (any k),
A185644 (triangle); fixed k: this sequence (k=2),
A185134 (k=3),
A185144 (k=4).
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^4/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
-
seq(coeff(series(x^4/mul(1-x^(m+4), m=0..65), x, n+1), x, n), n = 1..60); # G. C. Greubel, Nov 03 2019
-
Table[Count[IntegerPartitions[n],?(Min[#]==4&)],{n,60}] (* _Harvey P. Dale, May 13 2012 *)
Rest@CoefficientList[Series[x^4/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^60)); concat([0,0,0], Vec(x^4/prod(m=0,70, 1-x^(m+4)))) \\ G. C. Greubel, Nov 03 2019
-
def A026797_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^4/product((1-x^(m+4)) for m in (0..60)) ).list()
a=A026797_list(60); a[1:] # G. C. Greubel, Nov 03 2019
A124944
Table, number of partitions of n with k as high median.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 6, 4, 1, 1, 1, 1, 1, 8, 6, 3, 1, 1, 1, 1, 1, 11, 8, 5, 1, 1, 1, 1, 1, 1, 15, 11, 7, 3, 1, 1, 1, 1, 1, 1, 20, 15, 9, 5, 1, 1, 1, 1, 1, 1, 1, 26, 21, 12, 8, 3, 1, 1, 1, 1, 1, 1, 1, 35, 27, 16, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1, 45, 37, 21, 13, 8, 3
Offset: 1
For the partition [2,1^2], the sole middle element is 1, so that is the high median. For [3,2,1^2], the two middle elements are 1 and 2; the high median is the larger, 2.
From _Gus Wiseman_, Jul 12 2023: (Start)
Triangle begins:
1
1 1
1 1 1
2 1 1 1
3 1 1 1 1
4 3 1 1 1 1
6 4 1 1 1 1 1
8 6 3 1 1 1 1 1
11 8 5 1 1 1 1 1 1
15 11 7 3 1 1 1 1 1 1
20 15 9 5 1 1 1 1 1 1 1
26 21 12 8 3 1 1 1 1 1 1 1
35 27 16 10 5 1 1 1 1 1 1 1 1
45 37 21 13 8 3 1 1 1 1 1 1 1 1
58 48 29 16 11 5 1 1 1 1 1 1 1 1 1
Row n = 8 counts the following partitions:
(611) (521) (431) (44) (53) (62) (71) (8)
(5111) (422) (332)
(41111) (4211) (3311)
(32111) (3221)
(311111) (2222)
(221111) (22211)
(2111111)
(11111111)
(End)
The low version of this triangle is
A124943.
A008284 counts partitions by length, maximum, or decreasing mean.
A360005(n)/2 returns median of prime indices.
-
Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 1)/2]]] &, IntegerPartitions[#]]] &, Range[13]] (* Peter J. C. Moses, May 14 2019 *)
A185326
Number of partitions of n into parts >= 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0
2-regular simple graphs with girth at least 6:
A185116 (connected),
A185226 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3),
A008484 (g=4),
A185325(g=5), this sequence (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9).
-
A185326 := func;
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+6): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
-
seq(coeff(series(1/mul(1-x^(m+6), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
-
CoefficientList[Series[1/QPochhammer[x^6, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+6))) \\ G. C. Greubel, Nov 03 2019
-
def A185326_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+6)) for m in (0..80)) ).list()
A185326_list(70) # G. C. Greubel, Nov 03 2019
A026798
Number of partitions of n in which the least part is 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168
Offset: 0
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]:
A026794 (triangle); chosen g:
A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden),
A026796 (g=3),
A026797 (g=4), this sequence (g=5),
A026799 (g=6),
A026800 (g=7),
A026801 (g=8),
A026802 (g=9),
A026803 (g=10). -
Jason Kimberley, Nov 11 2011
-
R:=PowerSeriesRing(Integers(), 60); [1,0,0,0,0] cat Coefficients(R!( x^5/(&*[1-x^(m+5): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
-
ZL := [ B,{B=Set(Set(Z, card>=5))}, unlabeled ]: 1,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..54); # Zerinvary Lajos, Mar 13 2007
1, seq(coeff(series(x^5/mul(1-x^(m+5), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
-
f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Join[{1, 0, 0, 0, 0, 1}, Table[ f[n, 5], {n, 50}]] (* Robert G. Wilson v *)
Join[{1}, Drop[CoefficientList[Series[x^5/QPochhammer[x^5, x], {x,0,60}], x], 1]] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^60)); concat([1,0,0,0,0], Vec(x^5/prod(m=0,70, 1-x^(m+5)))) \\ G. C. Greubel, Nov 03 2019
-
def A026798_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^5/product((1-x^(m+5)) for m in (0..70)) ).list()
a=A026798_list(65); [1]+a[1:] # G. C. Greubel, Nov 03 2019
A185329
Number of partitions of n with parts >= 9.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 0
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3),
A008484 (g=4),
A185325(g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8), this sequence (g=9).
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+9): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
-
seq(coeff(series(1/mul(1-x^(m+9), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
-
CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+9))) \\ G. C. Greubel, Nov 03 2019
-
def A185329_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+9)) for m in (0..80)) ).list()
A185329_list(70) # G. C. Greubel, Nov 03 2019
A026799
Number of partitions of n in which the least part is 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0
a(0)=0 because there does not exist a least part of the empty partition.
The a(6)=1 partition is 6.
The a(12)=1 partition is 6+6.
The a(13)=1 partition is 6+7.
.............................
The a(17)=1 partition is 6+11.
The a(18)=2 partitions are 6+6+6 and 6+12.
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]:
A026794 (triangle); chosen g:
A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden),
A026796 (g=3),
A026797 (g=4),
A026798 (g=5), this sequence (g=6),
A026800 (g=7),
A026801 (g=8),
A026802 (g=9),
A026803 (g=10). -
Jason Kimberley, Feb 04 2011
-
p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
A026799 := func< n | p(n-6)-p(n-7)-p(n-8)+p(n-11)+p(n-12)+p(n-13)- p(n-14)-p(n-15)-p(n-16)+p(n-19)+p(n-20)-p(n-21) >; // Jason Kimberley, Feb 04 2011
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/(&*[1-x^(m+6): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
-
ZL := [ B,{B=Set(Set(Z, card>=6))}, unlabeled ]: 0,0,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..63); # Zerinvary Lajos, Mar 13 2007
seq(coeff(series(x^6/mul(1-x^(m+6), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
-
f[1, 1]=f[0, k_]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k+1] +f[n-k, k]]]]; Join[{0,0,0,0,0,0}, Table[f[n, 6], {n, 0, 65}]] (* Robert G. Wilson v, Jan 31 2011 *)
CoefficientList[Series[x^6/QPochhammer[x^6, x], {x,0,70}], x] (* G. C. Greubel, Nov 03 2019 *)
Join[{0},Table[Count[IntegerPartitions[n][[;;,-1]],6],{n,70}]] (* Harvey P. Dale, Dec 27 2023 *)
-
my(x='x+O('x^60)); concat([0,0,0,0,0,0], Vec(x^6/prod(m=0,70, 1-x^(m+6)))) \\ G. C. Greubel, Nov 03 2019
-
def A026799_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^6/product((1-x^(m+6)) for m in (0..70)) ).list()
A026799_list(65) # G. C. Greubel, Nov 03 2019
A185327
Number of partitions of n into parts >= 7.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 24, 27, 32, 36, 42, 48, 56, 63, 73, 83, 96, 108, 125, 141, 162, 183, 209, 236, 270, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153, 1291, 1453, 1628, 1829, 2045
Offset: 0
The a(0)=1 empty partition vacuously has each part >= 7.
The a(7)=1 partition is 7.
The a(8)=1 partition is 8.
............................
The a(13)=1 partition is 13.
The a(14)=2 partitions are 7+7 and 14.
2-regular simple graphs with girth at least 7:
A185117 (connected),
A185227 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3),
A008484 (g=4),
A185325(g=5),
A185326 (g=6), this sequence (g=7),
A185328 (g=8),
A185329 (g=9).
-
p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
A185327 := func< n | p(n)-p(n-1)-p(n-2)+p(n-5)+2*p(n-7)-p(n-9)-p(n-10)- p(n-11)-p(n-12)+2*p(n-14)+p(n-16)-p(n-19)-p(n-20)+p(n-21) >;
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+7): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
-
seq(coeff(series(1/mul(1-x^(m+7), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
-
f[1, 1] = f[0, k_] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 7], {n, 0, 65}] (* Robert G. Wilson v, Jan 31 2011 *) (* moved from A026800 by Jason Kimberley, Feb 03 2011 *)
Join[{1},Table[Count[IntegerPartitions[n],?(Min[#]>=7&)],{n,0,70}]] (* _Harvey P. Dale, Oct 16 2011 *)
CoefficientList[Series[1/QPochhammer[x^7, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+7))) \\ G. C. Greubel, Nov 03 2019
-
def A185327_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+7)) for m in (0..80)) ).list()
A185327_list(70) # G. C. Greubel, Nov 03 2019
Comments