cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 84 results. Next

A138904 Number of rotational symmetries in the binary expansion of a number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Max Sills, Apr 03 2008, Apr 04 2008

Keywords

Comments

Mersenne numbers of form (2^n - 1) have n rotational symmetries.
For prime length binary expansions these are the only nontrivial symmetries.
For composite length expansions it seems that when the number of symmetries is nontrivial it is equal to a factor of the length. We're working on an explicit formula.
Discovered in the context of random circulant matrices, examining if there's a correlation between degrees of freedom and number of symmetries in the first row.
When combined with A138954, these two sequences should give a full account of the number of redundant rows in a circulant square matrix with at most two distinct values, where a(n) is the encoding of the first row of the matrix into binary such that value a = 1 and value b = 0.
Discovered on the night of Apr 02, 2008 by Maxwell Sills and Gary Doran.
Conjecture: For binary expansions of length n, there are d(n) distinct values that will show up as symmetries, where d is the divisor function. The symmetry values will be precisely the divisors of n.
Example: for binary expansions of length 12, one sees that d(12) = 6 distinct values show up as symmetries (1, 2, 3, 4, 6, 12).
Conjecture: For numbers whose binary expansion has length n which has proper divisors which are all coprime: There will be only one number of length n with n symmetries. That number is 2^n - 1. For each proper divisor d (excluding 1), you can generate all numbers of length n that have n/d symmetries like so: (2^0 + 2^d + 2^2d ... 2^(n-d)) * a, where 2^(d-1) <= a < (2^d) - 1. The rest of the expansions of length n will have only the trivial symmetry.
Also the number of rotational symmetries of the n-th composition in standard order (graded reverse-lexicographic). This composition (row n of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 19 2020
From Gus Wiseman, Apr 19 2020: (Start)
Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
Period of binary expansion is A302291.
Compositions by sum and number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Reversed necklaces are A333943.
(End).

Examples

			a(10) = 2 because the binary expansion of 10 is 1010 and it has two rotational symmetries (including identity).
		

Crossrefs

Programs

  • Mathematica
    Table[IntegerLength[n,2]/Length[Union[Array[RotateRight[IntegerDigits[n,2],#]&,IntegerLength[n,2]]]],{n,100}] (* Gus Wiseman, Apr 19 2020 *)

Formula

a(n) = A070939(n)/A302291(n) = A000120(n)/A333632(n). - Gus Wiseman, Apr 19 2020

A050186 Triangular array T read by rows: T(h,k) = number of binary words of k 1's and h-k 0's which are not a juxtaposition of 2 or more identical subwords.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 0, 5, 10, 10, 5, 0, 0, 6, 12, 18, 12, 6, 0, 0, 7, 21, 35, 35, 21, 7, 0, 0, 8, 24, 56, 64, 56, 24, 8, 0, 0, 9, 36, 81, 126, 126, 81, 36, 9, 0, 0, 10, 40, 120, 200, 250, 200, 120, 40, 10, 0, 0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Keywords

Examples

			For example, T(4,2) counts 1100,1001,0011,0110; T(2,1) counts 10, 01 (hence also counts 1010, 0101).
Rows:
  1;
  1,  1;
  0,  2,  0;
  0,  3,  3,  0;
  0,  4,  4,  4,  0;
  0,  5, 10, 10,  5,  0;
		

Crossrefs

Same triangle as A053727 except this one includes column 0.
T(2n, n), T(2n+1, n) match A007727, A001700, respectively. Row sums match A027375.

Programs

  • Mathematica
    T[n_, k_] := If[n == 0, 1, DivisorSum[GCD[k, n], MoebiusMu[#] Binomial[n/#, k/#]&]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 16 2022 *)
  • PARI
    A050186(n,k)=sumdiv(gcd(n+!n,k),d,moebius(d)*binomial(n/d,k/d)) \\ M. F. Hasler, Sep 27 2018

Formula

MOEBIUS transform of A007318 Pascal's Triangle.
If rows n > 1 are divided by n, this yields the triangle A051168, which equals A245558 surrounded by 0's (except for initial terms). This differs from A011847 from row n = 9 on. - M. F. Hasler, Sep 29 2018

A051841 Number of binary Lyndon words with an even number of 1's.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 48, 93, 165, 315, 576, 1091, 2032, 3855, 7252, 13797, 26163, 49929, 95232, 182361, 349350, 671088, 1290240, 2485504, 4792905, 9256395, 17894588, 34636833, 67106816, 130150493, 252641280, 490853403, 954429840, 1857283155, 3616800768, 7048151355, 13743869130, 26817356775
Offset: 1

Views

Author

Frank Ruskey, Dec 13 1999

Keywords

Comments

Also number of trace 0 irreducible polynomials over GF(2).
Also number of trace 0 Lyndon words over GF(2).

Examples

			a(5) = 3 = |{ 00011, 00101, 01111 }|.
		

References

  • May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019

Crossrefs

Same as A001037 - A000048. Same as A042980 + A042979.
Cf. A000010.

Programs

  • Haskell
    a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v)
                 ds $ reverse ds) `div` (2 * n) where ds = a027750_row n
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n);
    Table[a[n], {n, 1, 32}]
    (* Jean-François Alcover, May 14 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */
    

Formula

a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d).
a(n) ~ 2^(n-1) / n. - Vaclav Kotesovec, May 31 2019
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)

A296658 Length of the standard Lyndon word factorization of the first n terms of A000002.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4, 5, 3, 3, 4, 5, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 6, 5, 6, 7, 6, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 7, 6, 7, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 7, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2017

Keywords

Examples

			The standard Lyndon word factorization of (12211212212211211) is (122)(112122122)(112)(1)(1), so a(17) = 5.
The standard factorizations of initial terms of A000002:
1
12
122
122,1
122,1,1
122,112
122,112,1
122,11212
122,112122
122,112122,1
122,11212212
122,112122122
122,112122122,1
122,112122122,1,1
122,112122122,112
122,112122122,112,1
122,112122122,112,1,1
122,112122122,112,112
122,112122122,1121122
122,112122122,1121122,1
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
    Table[Length[qit[Nest[kolagrow,1,n]]],{n,150}]

A152061 Counts of unique periodic binary strings of length n.

Original entry on oeis.org

0, 0, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 76, 2, 130, 38, 256, 2, 568, 2, 1036, 134, 2050, 2, 4336, 32, 8194, 512, 16396, 2, 33814, 2, 65536, 2054, 131074, 158, 266176, 2, 524290, 8198, 1048816, 2, 2113462, 2, 4194316, 33272, 8388610, 2, 16842496, 128, 33555424
Offset: 0

Views

Author

Jin S. Choi, Sep 24 2011

Keywords

Comments

a(p) = 2 for p prime.

Examples

			a(3) = 2 = |{ 000, 111 }|, a(4) = 4 = |{ 0000, 1111, 0101, 1010 }|.
		

Crossrefs

Row sums of A050870.
A050871 is bisection (even part). - R. J. Mathar, Sep 24 2011

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 0, 2^n -add(mobius(n/d)*2^d, d=divisors(n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 26 2011
  • Mathematica
    a[0] = 0; a[n_] := 2^n - Sum[MoebiusMu[n/d]*2^d, {d, Divisors[n]}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 04 2019 *)
  • Python
    from sympy import mobius, divisors
    def A152061(n): return -sum(mobius(n//d)<Chai Wah Wu, Sep 21 2024

Formula

a(n) = 2^n - A001037(n) * n for n>0, a(0) = 0.
a(n) = 2^n - A027375(n) for n>0, a(0) = 0.
a(n) = 2^n - Sum_{d|n} mu(n/d) 2^d for n>0, a(0) = 0.
a(n) = 2^n - A143324(n,2).
a(n) = 2 * A178472(n) for n > 0. - Alois P. Heinz, Jul 04 2019

A323861 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary toroidal necklaces.

Original entry on oeis.org

2, 1, 1, 2, 2, 2, 3, 9, 9, 3, 6, 27, 54, 27, 6, 9, 99, 335, 335, 99, 9, 18, 326, 2182, 4050, 2182, 326, 18, 30, 1161, 14523, 52377, 52377, 14523, 1161, 30, 56, 4050, 99858, 698535, 1342170, 698535, 99858, 4050, 56, 99, 14532, 698870, 9586395, 35790267, 35790267, 9586395, 698870, 14532, 99
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A001037.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Table begins:
        1    2    3    4
    ------------------------
  1: |  2    1    2    3
  2: |  1    2    9   27
  3: |  2    9   54  335
  4: |  3   27  335 4050
Inequivalent representatives of the A(3,2) = 9 aperiodic toroidal necklaces:
  [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1]
  [0 0 1] [0 1 1] [0 1 0] [0 1 1] [1 0 1] [1 1 0] [1 1 1] [1 0 1] [1 1 1]
		

Crossrefs

First and last columns are A001037. Main diagonal is A323872.

Programs

  • GAP
    # See link for code.
    for n in [1..8] do for k in [1..8] do Print(A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],And[apermatQ[#],neckmatQ[#]]&]],{n,6},{k,n-1}]

Extensions

Terms a(37) and beyond from Andrew Howroyd, Aug 21 2019

A323865 Number of aperiodic binary toroidal necklaces of size n.

Original entry on oeis.org

1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(6) = 36 aperiodic necklaces:
  000001  000011  000101  000111  001011  001101  001111  010111  011111
.
  000  000  001  001  001  001  001  011  011
  001  011  010  011  101  110  111  101  111
.
  00  00  00  00  00  01  01  01  01
  00  01  01  01  11  01  01  10  11
  01  01  10  11  01  10  11  11  11
.
  0  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  1  1
  0  0  0  0  1  1  1  0  1
  0  0  1  1  0  1  1  1  1
  0  1  0  1  1  0  1  1  1
  1  1  1  1  1  1  1  1  1
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);
    Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]

Formula

a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - Andrew Howroyd, Aug 21 2019

Extensions

Terms a(19) and beyond from Andrew Howroyd, Aug 21 2019

A329315 Irregular triangle read by rows where row n gives the sequence of lengths of components of the Lyndon factorization of the first n terms of A000002.

Original entry on oeis.org

1, 2, 3, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 3, 5, 3, 6, 3, 6, 1, 3, 8, 3, 9, 3, 9, 1, 3, 9, 1, 1, 3, 9, 3, 3, 9, 3, 1, 3, 9, 3, 1, 1, 3, 9, 3, 3, 3, 9, 7, 3, 9, 7, 1, 3, 9, 9, 3, 9, 9, 1, 3, 9, 9, 1, 1, 3, 9, 9, 3, 3, 9, 9, 3, 1, 3, 9, 14, 3, 9, 15, 3, 9, 15, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2019

Keywords

Comments

There are no repeated rows, as row n has sum n.
We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).
It appears that some numbers (such as 4) never appear in the sequence.

Examples

			Triangle begins:
   1: (1)
   2: (2)
   3: (3)
   4: (3,1)
   5: (3,1,1)
   6: (3,3)
   7: (3,3,1)
   8: (3,5)
   9: (3,6)
  10: (3,6,1)
  11: (3,8)
  12: (3,9)
  13: (3,9,1)
  14: (3,9,1,1)
  15: (3,9,3)
  16: (3,9,3,1)
  17: (3,9,3,1,1)
  18: (3,9,3,3)
  19: (3,9,7)
  20: (3,9,7,1)
For example, the first 10 terms of A000002 are (1221121221), with Lyndon factorization (122)(112122)(1), so row 10 is (3,6,1).
		

Crossrefs

Row lengths are A296658.
The reversed version is A329316.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Table[Length/@lynfac[kol[n]],{n,100}]

A038199 Row sums of triangle T(m,n) = number of solutions to 1 <= a(1) < a(2) < ... < a(m) <= n, where gcd(a(1), a(2), ..., a(m), n) = 1, in A020921.

Original entry on oeis.org

1, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646
Offset: 1

Views

Author

Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)

Keywords

Comments

The function T(m,n) described above has an inverse: see A038200.
Also, Moebius transform of 2^n - 1 = A000225. Also, number of rationals in [0, 1) whose binary expansions consist just of repeating bits of (least) period exactly n (i.e., there's no preperiodic part), where 0 = 0.000... is considered to have period 1. - Brad Chalfan (brad(AT)chalfan.net), May 29 2006

Crossrefs

A027375, A038199 and A056267 are all essentially the same sequence with different initial terms.
Cf. A059966 (a(n)/n).

Programs

  • Haskell
    a038199 n = sum [a008683 (n `div` d) * (a000225 d)| d <- a027750_row n]
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Mathematica
    Table[Plus@@((2^Divisors[n]-1)MoebiusMu[n/Divisors[n]]),{n,1,31}] (* Brad Chalfan (brad(AT)chalfan.net), May 29 2006 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(2^d-1)); \\ Michel Marcus, Jun 28 2017
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(n//d) * (2**d - 1) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 28 2017
    

Formula

a(n) = Sum_{d | n} mu(n/d)*(2^d-1). - Paul Barry, Mar 20 2005
Lambert g.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/((1 - x)*(1 - 2*x)). - Ilya Gutkovskiy, Apr 25 2017
O.g.f.: Sum_{d >= 1} mu(d)*x^d/((1 - x^d)*(1 - 2*x^d)). - Petros Hadjicostas, Jun 18 2019

Extensions

Better description from Michael Somos
More terms from Naohiro Nomoto, Sep 10 2001
More terms from Brad Chalfan (brad(AT)chalfan.net), May 29 2006

A323860 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary arrays.

Original entry on oeis.org

2, 2, 2, 6, 8, 6, 12, 54, 54, 12, 30, 216, 486, 216, 30, 54, 990, 4020, 4020, 990, 54, 126, 3912, 32730, 64800, 32730, 3912, 126, 240, 16254, 261414, 1047540, 1047540, 261414, 16254, 240, 504, 64800, 2097018, 16764840, 33554250, 16764840, 2097018, 64800, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional case is A027375.
An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Table begins:
       1     2     3     4
    ------------------------
  1: |  2     2     6    12
  2: |  2     8    54   216
  3: |  6    54   486  4020
  4: | 12   216  4020 64800
The A(2,2) = 8 arrays:
  [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1]
  [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0]
Note that the following are not aperiodic even though their row and column sequences are independently aperiodic:
  [1 0] [0 1]
  [0 1] [1 0]
		

Crossrefs

First and last columns are A027375. Main diagonal is A323863.

Programs

  • GAP
    # See A323861 for code.
    for n in [1..8] do for k in [1..8] do Print(n*k*A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],apermatQ]],{n,8},{k,n-1}]

Formula

T(n,k) = n*k*A323861(n,k). - Andrew Howroyd, Aug 21 2019

Extensions

Terms a(29) and beyond from Andrew Howroyd, Aug 21 2019
Previous Showing 21-30 of 84 results. Next