cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A354894 a(n) is the numerator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 5, 47, 319, 1879, 20417, 263111, 261395, 8842385, 33464927, 166770367, 3825136961, 19081066231, 57128792093, 236266661971, 7313175618421, 14606816124167, 102126365345729, 3774664307989373, 3771059091081773, 154479849447926113, 6637417807457499259, 6632660439700528339
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Differs from A049281.

Programs

  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 23}] // Numerator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 23}] // Numerator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = numerator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354894(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).p # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the numerator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the numerator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
a(n) / A354895(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).

A382812 Numerator of the n-th partial sum of the squares of the harmonic numbers.

Original entry on oeis.org

1, 13, 119, 1577, 3233, 8867, 141563, 2844129, 28119709, 335676251, 3968696491, 55023970333, 758025067309, 799020611041, 1676892996083, 59597395635137, 351844709221043, 2314823924364859, 9114392136427625, 628176680098075, 216039223801697, 5117413095318143, 363066107054194281, 27957386425926920257
Offset: 1

Views

Author

Gary Detlefs, Apr 05 2025

Keywords

Examples

			The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3)=119.
		

Crossrefs

Cf. A001008, A002805, A382813 (denominators).

Programs

  • Maple
    H2:= n-> add(harmonic(k)^2, k = 1..n): seq(numer(H2(n)), n=1..25);
  • Mathematica
    Accumulate[HarmonicNumber[Range[30]]^2]//Numerator (* Harvey P. Dale, Aug 10 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = numerator((n+1)*H(n)^2-(2*n+1)*H(n) + 2*n), where H(n) is the n-th harmonic number.
a(n) = numerator((S(n)*H(n)^2 + (2*n - 2*S(n) + 1)*H(n)-2*n)/(H(n)-1)), where S(n) is the n-th partial sum of H(n).

A382813 Denominator of the n-th partial sum of the squares of the harmonic numbers.

Original entry on oeis.org

1, 4, 18, 144, 200, 400, 4900, 78400, 635040, 6350400, 64033200, 768398400, 9275666400, 8657288640, 16232416200, 519437318400, 2779951574400, 16679709446400, 60213751101504, 3823095308032, 1216439416192, 26761667156224, 1769615240705312, 127412297330782464, 3062795608913040000
Offset: 1

Views

Author

Gary Detlefs, Apr 05 2025

Keywords

Comments

All terms for n>1 are even.

Examples

			The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3) = 18.
		

Crossrefs

Cf. A001008, A002805, A382812 (numerators).

Programs

  • Maple
    H2:= n-> add(harmonic(k)^2, k = 1..n): seq(denom(H2(n)), n=1..25);
  • PARI
    a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = denominator((n+1)*H(n)^2-(2*n+1)*H(n)+2*n), where H(n) is the n-th harmonic number.
a(n) = denominator((S(n)*H(n)^2+(2*n-2*S(n)+1)*H(n) - 2*n)/(H(n) - 1)), where S(n) = the n-th partial sum of H(n).

A120487 Denominator of 1^n/n + 2^n/(n-1) + 3^n/(n-2) + ... + (n-1)^n/2 + n^n/1.

Original entry on oeis.org

1, 2, 3, 12, 5, 20, 35, 280, 63, 2520, 385, 27720, 6435, 8008, 45045, 720720, 85085, 4084080, 969969, 739024, 29393, 5173168, 7436429, 356948592, 42902475, 2974571600, 717084225, 80313433200, 215656441, 2329089562800, 4512611027925
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

Numerator is A115071(n).
Also a(n) is denominator of (n+1)^(n+1) * (H(n+1) - 1), where H(k) is harmonic number, H(k) = Sum_{i=1..k} 1/i = A001008(k)/A002805(k). - Alexander Adamchuk, Jan 02 2007

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[k^n/(n-k+1),{k,1,n}],{n,1,50}]]
    Table[ Denominator[ (n+1)^(n+1) * Sum[ 1/i,{i,2,n+1} ] ], {n,1,40} ] (* Alexander Adamchuk, Jan 02 2007 *)

Formula

a(n) = denominator(Sum_{k=1..n} k^n/(n-k+1)).
a(n) = denominator((n+1)^(n+1) * Sum_{i=2..n+1} 1/i). - Alexander Adamchuk, Jan 02 2007

A123369 Number of prime divisors of n-th Conway and Guy second-order harmonic number (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 4, 3, 1, 2, 5, 3, 3, 2, 2, 1, 3, 3, 3, 1, 1, 2, 2, 2, 5, 2, 2, 2, 5, 1, 3, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2, 6, 2, 3, 4, 2, 4, 2, 3, 3, 2, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 4, 2, 2, 5, 3, 2, 2, 4, 4, 2, 2, 1, 6, 4, 2, 5, 3, 5, 1, 2, 2, 3, 4, 2, 3, 3, 3, 5
Offset: 1

Views

Author

Jonathan Vos Post, Nov 09 2006

Keywords

Comments

We must include multiplicity in the definition due to terms such as a(16) = 29889983 = 19 * 31^2 * 1637. The primes are those n for which a(n) = Omega(A027612(n))= 1, namely a(2) = 5, a(3) = 13, a(6) = 223, a(9) = 4861, a(18) = 197698279, a(25) = 25472027467. The semiprimes are those for which a(n) = 2, such as when n = 4, 5, 7, 8, 11, 12, 13, 15, 19, 23, 24. The 3-almost primes are those for which a(n) = 3, as with the "3-brilliant" a(10) = 55991 = 13 * 59 * 73, a(14), a(17), a(21), a(22), a(26).

Examples

			a(20) = 5 because A027612(20) = 41054655 = 3 * 5 * 23 * 127 * 937 has 5 prime factors.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, pp. 143 and 258-259.

Crossrefs

Cf. A001222 Number of prime divisors of n (counted with multiplicity), A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n, A027611, A001008, A002805, A001705, A006675, A093418.

Programs

  • Mathematica
    PrimeOmega[Numerator[Table[Sum[k/(n - k + 1), {k, 1, n}], {n, 1, 50}]]] (* G. C. Greubel, Jan 22 2017 *)

Formula

a(n) = A001222(A027612(n)) = Omega(Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n).

A316297 a(n) = n! times the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

1, 4, 36, 288, 7200, 14400, 705600, 11289600, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 26147806404089610240000, 9439358111876349296640000
Offset: 1

Views

Author

Matthew Campbell, Jun 29 2018

Keywords

Examples

			a(4) = 4! * A002805(4) = 24 * 12 = 288.
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> denom(H(n))*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jul 21 2018
  • Mathematica
    a[n_] := n! Denominator@HarmonicNumber@n; Array[a, 18] (* Robert G. Wilson v, Jun 30 2018 *)
  • PARI
    a(n) = n! * denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Aug 12 2018

Formula

a(n) = A000142(n) * A002805(n).

A119389 Numerator of (1^2/n + 2^2/(n-1) + ... + k^2/(n-k+1) + ... + (n-1)^2/2 + n^2/1).

Original entry on oeis.org

1, 9, 34, 265, 186, 1141, 2868, 31401, 18635, 477301, 91192, 8051069, 4508441, 3336145, 22048024, 410111791, 223063947, 3057889621, 823596665, 706952715, 125961187, 6173866701, 9838037952, 521135614075, 275363139571
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

p divides a(p-1) for prime p>2. p divides a(2p-1) for all prime p. p divides a(3p-1) for all prime p. p divides a(4p-1) for all prime p except p=3. p divides a(5p-1) for prime p>3. p divides a(6p-1) for all prime except p=5. . p^2 divides a(p^2-1) for prime p>2. p^2 divides a(2p^2-1) for all prime p. p^2 divides a(3p^2-1) for all prime p. . p^3 divides a(p^3-1) for prime p>2. . p^k divides a(p^k-1) for prime p>2 and integer k>1. p^k divides a(m*p^k-1) for all prime p and integer m,k>1.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[k^2/(n-k+1),{k,1,n}],{n,1,50}]]

Formula

a(n) = Numerator[Sum[k^2/(n-k+1),{k,1,n}]]. a(n) = Numerator[HarmonicNumber[n]*(n+1)^2 - 3*n(n+1)/2]. a(n) = Numerator[A001008[n]/A002805[n]*(n+1)^2 - 3*A000217[n]].

A119782 Numerator of Sum[ i^3/(n-i+1)^2, {i,1,n}].

Original entry on oeis.org

1, 33, 262, 10325, 7227, 923027, 4588732, 49631229, 29087285, 1618749187, 152762993, 69307256941, 191848206263, 702044812445, 9181629908344, 2873944084323677, 1547933530301469, 1198197057199579439
Offset: 1

Views

Author

Alexander Adamchuk, Jun 25 2006

Keywords

Comments

Prime p divides a(2p-1). Prime p divides a(3p-1), p>2. Prime p divides a(p-1), p>2. p^2 divides a(p^2-1) for prime p>2. p^3 divides a(p^3-1) for prime p>2. p^4 divides a(p^4-1) for prime p>2. p^5 divides a(p^5-1) for prime p>2.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[i^3/(n-i+1)^2,{i,1,n}],{n,1,50}]]

Formula

a(n) = numerator[ Sum[i^3/(n-i+1)^2, {i,1,n}]].

A119783 Numerator of Sum_{i=1..n} i^3/(n-i+1).

Original entry on oeis.org

1, 17, 94, 965, 841, 6167, 18044, 225489, 75220, 4280111, 899494, 86645897, 26288822, 41914055, 296912584, 5893703327, 1703822073, 49486578079, 14076109870, 12725008135, 1190932611, 122366761563, 203957791852
Offset: 1

Views

Author

Alexander Adamchuk, Jun 25 2006

Keywords

Comments

Prime p divides a(2p-1), p>3. Prime p divides a(3p-1), p>2. Prime p divides a(p-1), p>3. p^2 divides a(p^2-1) for prime p>3. p^3 divides a(p^3-1) for prime p>3. p^4 divides a(p^4-1) for prime p>3. p^5 divides a(p^5-1) for p>3.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[i^3/(n-i+1),{i,1,n}],{n,1,50}]]

Formula

a(n) = numerator( Sum_{i=1..n} i^3/(n-i+1) ).

A300910 Expansion of e.g.f. 1/(1 - x)^(x/(1 - x)^2).

Original entry on oeis.org

1, 0, 2, 15, 116, 1070, 11754, 149436, 2145296, 34193736, 598061160, 11377384920, 233732130312, 5153974126704, 121354505626704, 3037419444974040, 80497938647953920, 2251124265581428800, 66225476356207660224, 2044005966844402035456, 66025689709572751040640, 2227221130525199246067840, 78301158190416233445985920
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Exponential transform of A006675.

Examples

			1/(1 - x)^(x/(1 - x)^2) = 1 + 2*x^2/2! + 15*x^3/3! + 116*x^4/4! + 1070*x^5/5! + 11754*x^6/6! + 149436*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1-x)^(x/(1-x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x)^(x/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k k! (HarmonicNumber[k] - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: A(x) = exp(B(x)*C(x)), where B(x) is the g.f. of the sequence {0, 1, 2, 3, 4, 5, ...} and C(x) is the g.f. of the sequence {0, 1, 1/2, 1/3, 1/4, 1/5, ...}.
a(0) = 1; a(n) = Sum_{k=1..n} k*k!*(H(k)-1)*binomial(n-1,k-1)*a(n-k), where H(k) is the k-th harmonic number.
Previous Showing 21-30 of 30 results.