cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A137582 Numbers having no inner zeros in decimal representation of their factorial.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 31, 40
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 27 2008

Keywords

Comments

Conjecture: the sequence is finite.

Examples

			A000142(a(10)) = 11! = 399168*10^2;
A000142(a(11)) = 14! = 871782912*10^2;
A000142(a(12)) = 31! = 822283865417792281772556288*10^7.
		

Crossrefs

Programs

  • PARI
    isok(k) = my(f=k!); while(!(f % 10), f \= 10); #select(x->(x == 0), digits(f)) == 0; \\ Michel Marcus, Jun 28 2023

Formula

A137581(a(n)) = 0.

A165753 Number of trailing zeros in sequence of factorials of Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 4, 7, 13, 20, 34, 56, 93, 150, 244, 396, 643, 1043, 1689, 2733, 4425, 7161, 11587, 18754, 30344, 49100, 79449, 128552, 208007, 336563, 544573, 881140, 1425715, 2306860, 3732583, 6039449, 9772038, 15811490, 25583533, 41395029
Offset: 1

Views

Author

Carmine Suriano, Sep 26 2009

Keywords

Comments

a(n) is the number of zeros at rightmost place of F(n)!

Examples

			F(7)!=13!=6227020800 which ends with 2 zeros; therefore a(7)=2.
		

References

  • C. Suriano, Miniature Matematiche, Il rosone, 2009, pp. 149-152.

Programs

  • Mathematica
    zOF[n_Integer?Positive]:=Module[{maxpow=0},While[5^maxpow<=n,maxpow++];Plus@@Table[Quotient[n,5^i],{i,maxpow-1}]];zOF[#]&/@ Fibonacci[ Range[ 50]] (* Harvey P. Dale, Jan 10 2020 *)

Formula

a(n) = A027868(A000045(n))
a(n) = k * phi^n + O(n), for k = 1/sqrt(80).

Extensions

Extended and edited by Charles R Greathouse IV, Mar 23 2010

A175417 Exponent of 2 minus sum of all other exponents, in the prime power factorization of n!

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 3, 1, 1, 0, 1, 0, 0, -2, 2, 1, 0, -1, 0, -2, -2, -3, -1, -3, -3, -6, -5, -6, -7, -8, -3, -5, -5, -7, -7, -8, -8, -10, -8, -9, -10, -11, -10, -13, -13, -14, -11, -13, -14, -16, -15, -16, -18, -20, -18, -20, -20, -21, -21, -22, -22, -25, -19, -21, -22
Offset: 0

Views

Author

Zak Seidov, May 08 2010

Keywords

Comments

a(n)=0 for n={0,1,3,7,11,13,14,18,20}.

Examples

			a(20) = 0 because 20! = 2432902008176640000 = ((2^18)*(3^8)*(5^4)*(7^2)*(11^1)*(13^1)*(17^1)*(19^1)) and 18-(8+4+2+1+1+1+1) = 0.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,p,k;
          p:= 2: t:= add(floor(n/2^k),k=1..ilog2(n)):
          do
            p:= nextprime(p);
            if n < p then return t fi;
            t:= t - add(floor(n/p^k),k=1..ilog[p](n))
          od
    end proc:
    map(f, [$0..100]); # Robert Israel, Nov 10 2024
  • Mathematica
    Table[2*IntegerExponent[m!,2]-Total[Last/@FactorInteger[m! ]],{m,0,130}]

Formula

a(n)=2*A011371(n)-A022559(n).

A181578 The number k such that each of the five factorials (5k+j)!, j=0..4, has exactly n trailing zeros in its base-10 representation; 0 if no such k exists.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 0, 10, 11, 12, 13, 14, 0, 15, 16, 17, 18, 19, 0, 20, 21, 22, 23, 24, 0, 0, 25, 26, 27, 28, 29, 0, 30, 31, 32, 33, 34, 0, 35, 36, 37, 38, 39, 0, 40, 41, 42, 43, 44, 0, 45, 46, 47, 48, 49, 0, 0, 50, 51, 52, 53, 54, 0, 55, 56, 57, 58, 59, 0, 60, 61, 62, 63
Offset: 0

Views

Author

Lekraj Beedassy, Nov 02 2010

Keywords

Comments

Entries are zero if n is an element of A000966.
This traces 5 consecutive occurrences of n in A027868.

Crossrefs

A181581 Smallest k such that each of the five factorials (5k)!, (5k+1)!, (5k+2)!, (5k+3)! and (5k+4)! has exactly 10^n trailing 0's. Zero, if no such k exists.

Original entry on oeis.org

1, 9, 81, 801, 8002, 80001, 800001, 8000002, 80000003, 800000003, 8000000003, 80000000003, 800000000002, 8000000000003, 80000000000004, 0, 0, 0, 800000000000000004, 8000000000000000003, 0, 800000000000000000005, 8000000000000000000006, 0
Offset: 0

Views

Author

Lekraj Beedassy, Nov 02 2010

Keywords

Comments

a(n) = A173558(n)/5 or 0.

Crossrefs

Extensions

a(15)-a(17) corrected and a(18)-a(23) added by Hiroaki Yamanouchi, Oct 06 2014

A218976 a(n) is the smallest positive integer such that 10^(2 + floor(k/a(1)) + floor(k/a(2)) + ... + floor(k/a(n))) divides (k+9)! for all k > 0.

Original entry on oeis.org

6, 16, 116, 241, 242, 491, 991, 2491, 3331, 14966, 15556, 62491, 78116, 83331, 249991, 264866, 546841, 1109366, 2265491, 4999861, 4999991, 5837041, 12499996, 25249861, 26011861, 36249091, 80070866, 190999991, 242090611, 365038621, 976562241, 1210466866, 1830622801
Offset: 1

Views

Author

Keywords

Comments

Every factorial of the form (k+9)! for every integer k > 0 ends at least in two zeros. This sequence gives a lower bound on the number of zeros.
This sequence is infinite and increasing, with 1/a(1) + 1/a(2) + ... = 1/4.
Conjecture: All terms except a(5) are 1 mod 5. - R. J. Cano, Nov 11 2012

Examples

			10^(2 + floor(5/5)) does not divide 14!, so a(1) > 5. But 10^(2 + floor(k/6)) divides (k+9)! for all k > 0, so a(1) = 6.
		

Crossrefs

Programs

  • PARI
    searchLimit(s1)={
        my(e,s2,f=(e,s)->(e+2-9*s)/(s-s1));
        while(s2<=s1, s2 += 1/5^e++);
        min(f(e,s2), f(e++,s2+=1/5^e))\1
    };
    v5(n)=my(s);while(n\=5,s+=n);s;
    nxt(v=[6])={
        my(S=sum(i=1,#v,1/v[i]), candidate=max(v[#v],1\(1/4-S))+1, k=candidate, lm=searchLimit(S+1/candidate));
        while(k<=lm,
            if(v5(k+9)<2+sum(i=1,#v,k\v[i])+k\candidate,
                candidate++;
                lm=searchLimit(S+1/candidate)
            ,
                k++
            )
        );
        candidate
    };
    steps(n)={
        my(v=[6],t);
        print1(6);
        for(i=2,n,
            t=nxt(v);
            print1(", "t);
            v=concat(v,t)
        );
        v
    };
    steps(20)

Formula

Let Psi(k) = 2 + sum_{n >= 1} floor(k/a(n)). Then 10^Psi(k) divides (k+9)!.

Extensions

a(32)-a(33) from Charles R Greathouse IV, Nov 19 2012

A228311 Numbers k such that the sum of digits of k! is itself a factorial.

Original entry on oeis.org

0, 1, 2, 3, 4, 21966, 176755, 182624820
Offset: 1

Views

Author

Keywords

Comments

The sum of digits of k! is approximately (9/2)*(d-z), where d=A034886(k) is the number of digits of k!, which is about (log(k/E)*k + log(2*k*Pi)/2)/log(10), and z=A027868(k) is the number of trailing zeros of k!, which is Sum_{j>=1} floor(k/5^j). - Giovanni Resta, Aug 28 2013
a(9) > 2.235*10^9. - Hans Havermann, May 16 2014
k! has ~ k log_10(k) digits, so its digit sum is typically close to C*k*log_10(k) for some constant C. A random number around j has probability something like log(j)/(j log log(j)) of being a factorial, so the probability that the digit sum of k! is a factorial should be something like const/(k log log k). The sum of this diverges, so we should expect infinitely many terms in the sequence. - Robert Israel, Aug 08 2014

Examples

			The sum of the digits of 21966! is 362880 = 9!.
The sum of the digits of 176755! is 3628800 = 10!.
The sum of the digits of 182624820! is 6227020800 = 13!.
		

Crossrefs

Programs

  • Mathematica
    lst = {0}; k = p = 1; fctl = Range@ 15!; While[k < 180000, p = p*k; While[ Mod[p, 10] == 0, p /= 10]; If[ MemberQ[ fctl, Plus @@ IntegerDigits@ p], Print[k]; AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Feb 18 2014 *)
    With[{fcts=Range[20]!},Select[Range[0,22000],MemberQ[fcts,Total[IntegerDigits[#!]]]&]] (* Harvey P. Dale, Jan 06 2024 *)
  • PARI
    lpf(n)=my(f=factor(n)[,1]); f[1]
    factorial_lval(n, p)={
        my(s);
        while(n\=p, s+=n);
        s
    };
    isfactorial(n)={
        if(n<3, return(n>0));
        my(v2=valuation(n,2),mn=v2+1,mx=mn+log(v2+1.5)\log(2),t,c);
        while (mx - mn > 1,
            t = mn + (mx - mn)\2;
            c = factorial_lval(t, 2);
            if (c < v2,
                mn = t+1
            ,
                if (c > v2,
                    mx = t-1
                ,
                    mx = bitor(t,1);
                    mn = max(mn, mx-1)
                )
            )
        );
        if (mn < mx,
            my(p=lpf(mx));
            t = valuation(n, p);
            c = factorial_lval(mx, p);
            if (t > c,return(0));
            if (t == c,
                mn = mx
            )
        );
        n==mn!
    };
    is(n)=isfactorial(sumdigits(n!))

Extensions

a(8) from Hans Havermann, Mar 24 2014

A255400 a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 0's.

Original entry on oeis.org

0, 5, 10, 15, 20, 264, 25, 30, 35, 40, 45, 101805, 50, 55, 60, 65, 70
Offset: 0

Views

Author

Martin Y. Champel, Feb 22 2015

Keywords

Comments

Most multiples of 5 belong to the sequence (if not all).
All terms whose indices are included in A000966 are far bigger than their neighboring terms whose indices are multiples of 5.
a(11) is a multiple of 5, we can verify a(11) = a(25448).

Examples

			a(0) = 0 as 0! = 1 does not contain '0'.
a(1) = 5 as 5! = 120 contains '0'.
a(2) = 10 as 10! = 3628800 contains '00' and 10 is the smallest integer for which the condition is met.
		

Crossrefs

Programs

  • PARI
    \\ uses is() from A000966
    f(k, special, sz, sz1) = my(f=k!); if (special, s=Str(f/10^valuation(f, 10)), s=Str(k!)); #strsplit(s, sz) - #strsplit(s, sz1);
    a(n) = if (n==0, return(0)); my(sz= concat(vector(n, k, "0")), sz1=concat(sz, "0"), k=1,special=is(n)); while (f(k, special, sz, sz1) != 1, k++); k; \\ Michel Marcus, Oct 25 2023
  • Python
    # Python version 2.7
    from math import factorial as fct
    def trailing_zero(n):
        k=0
        while n!=0:
            n/=5
            k+=n
        return k
    def A255400():
        index = 1
        f = 1
        while True:
            if trailing_zero(f) == index:
                print("A255400("+str(index)+") = " +str(f))
                index += 1
            elif trailing_zero(f) > index:
                while True:
                    clnzer = str(fct(f))[:-trailing_zero(f)]
                    if index*'0' in clnzer and (index+1)*'0' not in clnzer:
                        print("A255400("+str(index)+") = " +str(f))
                        index += 1
                        f = 0
                        break
                    f +=1
            f +=1
        return
    
  • Python
    import re
    def A255400(n):
        f, i, s = 1, 0, re.compile('[0-9]*[1-9]0{'+str(n)+'}[1-9][0-9]*')
        while s.match(str(f)+'1') is None:
            i += 1
            f *= i
        return i # Chai Wah Wu, Apr 02 2015
    

A354463 a(n) is the number of trailing zeros in (2^n)!.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 14, 31, 63, 126, 253, 509, 1021, 2045, 4094, 8189, 16380, 32763, 65531, 131067, 262140, 524285, 1048571, 2097146, 4194297, 8388603, 16777208, 33554424, 67108858, 134217720, 268435446, 536870902, 1073741816, 2147483642, 4294967289, 8589934584, 17179869176, 34359738358, 68719476729
Offset: 0

Views

Author

William Boyles, May 31 2022

Keywords

Examples

			For n = 4, (2^4)! = 20922789888000, which has a(4) = 3 trailing zeros.
		

Crossrefs

Programs

  • Haskell
    seq n = aux (2 ^ n) 0
      where
        aux x acc
          | x < 5 = acc
          | otherwise = aux y (acc + y)
          where
            y = x `div` 5
    
  • Mathematica
    a[n_]:=IntegerExponent[(2^n)!]; Array[a,38,0] (* Stefano Spezia, Jun 01 2022 *)
  • PARI
    a(n) = val(1<David A. Corneth, Jun 01 2022
    
  • Python
    from sympy import factorial, multiplicity
    def a(n): return multiplicity(5, factorial(2**n, evaluate=False))
    print([a(n) for n in range(39)]) # Michael S. Branicky, Jun 01 2022
    
  • Python
    def A354463(n):
        c, m = 0, 2**n
        while m >= 5:
            m //= 5
            c += m
        return c # Chai Wah Wu, Jun 02 2022

Formula

a(n) = A027868(A000079(n)). - Michel Marcus, Jun 01 2022
a(n) = 2^(n-2) - A055223(n) for n >= 2. - John Keith, Jun 06 2022

A381886 Triangle read by rows: T(n, k) = Sum_{j=1..floor(log[k](n))} floor(n / k^j) if k >= 2, T(n, 1) = n, T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 3, 1, 1, 1, 0, 6, 4, 2, 1, 1, 1, 0, 7, 4, 2, 1, 1, 1, 1, 0, 8, 7, 2, 2, 1, 1, 1, 1, 0, 9, 7, 4, 2, 1, 1, 1, 1, 1, 0, 10, 8, 4, 2, 2, 1, 1, 1, 1, 1, 0, 11, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 03 2025

Keywords

Examples

			Triangle starts:
  [ 0] 1;
  [ 1] 0,  1;
  [ 2] 0,  2,  1;
  [ 3] 0,  3,  1, 1;
  [ 4] 0,  4,  3, 1, 1;
  [ 5] 0,  5,  3, 1, 1, 1;
  [ 6] 0,  6,  4, 2, 1, 1, 1;
  [ 7] 0,  7,  4, 2, 1, 1, 1, 1;
  [ 8] 0,  8,  7, 2, 2, 1, 1, 1, 1;
  [ 9] 0,  9,  7, 4, 2, 1, 1, 1, 1, 1;
  [10] 0, 10,  8, 4, 2, 2, 1, 1, 1, 1, 1;
  [11] 0, 11,  8, 4, 2, 2, 1, 1, 1, 1, 1, 1;
  [12] 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A011371 (column 2), A054861 (column 3), A054893 (column 4), A027868 (column 5), A054895 (column 6), A054896 (column 7), A054897 (column 8), A054898 (column 9), A078651 (row sums).

Programs

  • Maple
    T := (n, b) -> local i; ifelse(b = 0, b^n, ifelse(b = 1, n, add(iquo(n, b^i), i = 1..floor(log(n, b))))): seq(seq(T(n, b), b = 0..n), n = 0..12);
    # Alternative:
    T := (n, k) -> local j; ifelse(k = 0, k^n, ifelse(k = 1, n, add(padic:-ordp(j, k), j = 1..n))): for n from 0 to 12 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    T[n_, 0] := If[n == 0, 1, 0]; T[n_, 1] := n;
    T[n_, k_] := Last@Accumulate[IntegerExponent[Range[n], k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // MatrixForm
    (* Alternative: *)
    T[n_, k_] := Sum[Floor[n/k^j], {j, Floor[Log[k, n]]}]; T[n_, 1] := n; T[n_, 0] := 0^n; T[0, 0] = 1; Flatten@ Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2025 *)
  • PARI
    T(n,k) = if (n==0, 1, if (n==1, k, if (k==0, 0, if (k==1, n, sum(j=1, n, valuation(j, k))))));
    row(n) = vector(n+1, k, T(n,k-1)); \\ Michel Marcus, Apr 04 2025
  • Python
    from math import log
    def T(n: int, b: int) -> int:
        return (b**n if b == 0 else n if b == 1 else
            sum(n // (b**i) for i in range(1, 1 + int(log(n, b)))))
    print([[T(n, b) for b in range(n+1)] for n in range(12)])
    
  • SageMath
    def T(n, b): return (b^n if b == 0 else n if b == 1 else sum(valuation(j, b) for j in (1..n)))
    print(flatten([[T(n, b) for b in range(n+1)] for n in srange(13)]))
    

Formula

T(n, k) = Sum_{j=1..n} valuation(j, k) for n >= 2.
Previous Showing 61-70 of 72 results. Next