cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A034684 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = min { p_i^e_i }.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 3, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 5, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 5, 81, 2, 83, 3, 5, 2, 3, 8, 89, 2, 7, 4
Offset: 1

Views

Author

Keywords

Comments

a(1) = 1; for n > 1, smallest unitary divisor of n that is larger than 1.

Crossrefs

Programs

Formula

a(n) = min{A141809(n,k): k=1..A001221(n)}. - Reinhard Zumkeller, Jan 29 2013
a(n) = n/A052125(n). - Amiram Eldar, Sep 16 2024

A059896 The set of Fermi-Dirac factors of A(n,k) is the union of the Fermi-Dirac factors of n and k. Symmetric square array read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 8, 3, 8, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 24, 5, 24, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 27, 8, 35, 6, 35, 8, 27, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Every positive integer, m, is the product of a unique subset, S(m), of the numbers listed in A050376 (primes, squares of primes etc.) The Fermi-Dirac factors of m are the members of S(m). So T(n,k) is the product of the members of (S(n) U S(k)).
Old name: Table a(i,j) = product prime(k)^(Ei(k) OR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; OR is the bitwise operation on binary representation of the exponents.
Analogous to LCM, with OR replacing MAX.
A003418-analog seems to be A066616. - Antti Karttunen, Apr 12 2017
Considered as a binary operation, the result is the lowest common multiple of the squarefree parts of its operands multiplied by the square of the operation's result when applied to the square roots of the square parts of its operands. - Peter Munn, Mar 02 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 OR 3) * 3^(3 OR 5) = 2^7*3^7 = 279936.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  2,  6,  8, 10,  6, 14,  8,  18,  10,  22,  24
   3,  6,  3, 12, 15,  6, 21, 24,  27,  30,  33,  12
   4,  8, 12,  4, 20, 24, 28,  8,  36,  40,  44,  12
   5, 10, 15, 20,  5, 30, 35, 40,  45,  10,  55,  60
   6,  6,  6, 24, 30,  6, 42, 24,  54,  30,  66,  24
   7, 14, 21, 28, 35, 42,  7, 56,  63,  70,  77,  84
   8,  8, 24,  8, 40, 24, 56,  8,  72,  40,  88,  24
   9, 18, 27, 36, 45, 54, 63, 72,   9,  90,  99, 108
  10, 10, 30, 40, 10, 30, 70, 40,  90,  10, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,  11, 132
  12, 24, 12, 12, 60, 24, 84, 24, 108, 120, 132,  12
		

Crossrefs

Sequences used in a definition of this sequence: A003986, A000188/A007913/A008833, A052330/A052331.
Has simple/very significant relationships with A003961, A059895/A059897, A225546, A267116.

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059895(x,y) * A059897(x,y).
A(x,y) * A059895(x,y) = x*y.
(End).
From Peter Munn, Mar 02 2022: (Start)
OR denotes the bitwise operation (A003986).
Limited multiplicative property: if gcd(n_1*k_1, n_2*k_2) = 1 then A(n_1*n_2, k_1*k_2) = A(n_1, k_1) * A(n_2, k_2).
For prime p, A(p^e_1, p^e_2) = p^(e_1 OR e_2).
A(n, A(m, k)) = A(A(n, m), k).
A(n, k) = A(k, n).
A(n, 1) = A(n, n) = n.
A(n^2, k^2) = A(n, k)^2.
A(n, k) = A(A007913(n), A007913(k)) * A(A008833(n), A008833(k)) = lcm(A007913(n), A007913(k)) * A(A000188(n), A000188(k))^2.
A007947(A(n, k)) = A007947(n*k).
Isomorphism: A(A052330(n), A052330(k)) = A052330(n OR k).
Equivalently, A(n, k) = A052330(A052331(n) OR A052331(k)).
A(A003961(n), A003961(k)) = A003961(A(n, k)).
A(A225546(n), A225546(k)) = A225546(A(n, k)).
(End)

Extensions

New name from Peter Munn, Mar 02 2022

A046073 Number of squares in multiplicative group modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, 3, 2, 2, 8, 3, 9, 2, 3, 5, 11, 1, 10, 6, 9, 3, 14, 2, 15, 4, 5, 8, 6, 3, 18, 9, 6, 2, 20, 3, 21, 5, 6, 11, 23, 2, 21, 10, 8, 6, 26, 9, 10, 3, 9, 14, 29, 2, 30, 15, 9, 8, 12, 5, 33, 8, 11, 6, 35, 3, 36, 18, 10, 9, 15, 6, 39, 4, 27, 20, 41, 3, 16, 21
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of different diagonal elements in Cayley table for multiplicative group modulo n. But the fact that the same number of different elements are on the diagonal of the Cayley table does not mean in every case that these groups are isomorphic. - Artur Jasinski, Jul 03 2010
The number of quadratic residues modulo n that are coprime to n. These residues are listed in A096103. - Peter Munn, Mar 10 2021

References

  • Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 95, 1993.

Crossrefs

Row lengths of A096103.
Positions of ones: A018253.

Programs

  • Maple
    F:= n -> nops({seq}(`if`(igcd(t,n)=1,t^2 mod n,NULL), t=1..floor(n/2))):
    1, seq(F(n), n=2..100); # Robert Israel, Jan 04 2015
    # 2nd program
    A046073 := proc(n)
        local a,p,e,pf;
        a := 1;
        for pf in ifactors(n)[2] do
            p := op(1,pf) ;
            e := op(2,pf) ;
            if p = 2 then
                a := a*p^max(e-3,0) ;
            else
                a := a*(p-1)/2*p^(e-1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 03 2016
  • Mathematica
    Table[EulerPhi[n]/Sum[Boole[Mod[k^2, n] == 1] + Boole[n == 1], {k, n}], {n, 86}] (* or *)
    Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, p == 2, 2^Max[e - 3, 0], True, (p - 1) p^(e - 1)/2]], {n, 86}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    A060594(n) = if(n<=2, 1, 2^#znstar(n)[3]); \\ This function from Joerg Arndt, Jan 06 2015
    A046073(n) = eulerphi(n)/A060594(n); \\ Antti Karttunen, Jul 17 2017, after Sharon Sela's Mar 09 2002 formula.
    
  • PARI
    A046073(n)=if(n>4,(n=znstar(n))[1]>>#n[3],1) \\ Avoids duplicate computation of phi(n). - M. F. Hasler, Nov 27 2017, typo fixed Mar 11 2021
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod([2**max(e - 3, 0) if p==2 else (p - 1)*p**(e - 1)//2 for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 17 2017
  • Scheme
    (define (A046073 n) (cond ((= 1 n) n) ((even? n) (* (A000079 (max (- (A007814 n) 3) 0)) (A046073 (A028234 n)))) (else (* (/ 1 2) (- (A020639 n) 1) (/ (A028233 n) (A020639 n)) (A046073 (A028234 n)))))) ;; Antti Karttunen, Jul 17 2017, after the given multiplicative formula.
    

Formula

a(n) * A060594(n) = A000010(n) = phi(n) (This gives a formula for a(n) using the one in A060594(n) ). - Sharon Sela (sharonsela(AT)hotmail.com), Mar 09 2002
Multiplicative with a(2^e) = 2^max(e-3,0), a(p^e) = (p-1)*p^(e-1)/2 for p an odd prime.
Sum_{k=1..n} a(k) ~ c * n^2/sqrt(log(n)), where c = (43/(80*sqrt(Pi))) * Product_{p prime} (1+1/(2*p))*sqrt(1-1/p) = 0.24627260085060864229... (Finch and Sebah, 2006). - Amiram Eldar, Oct 18 2022

Extensions

Edited and verified by Franklin T. Adams-Watters, Nov 07 2006

A141809 Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 3, 7, 8, 9, 2, 5, 11, 4, 3, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 8, 3, 25, 2, 13, 27, 4, 7, 29, 2, 3, 5, 31, 32, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 8, 5, 41, 2, 3, 7, 43, 4, 11, 9, 5, 2, 23, 47, 16, 3, 49, 2, 25, 3, 17, 4, 13, 53, 2, 27, 5, 11, 8, 7, 3
Offset: 1

Views

Author

Leroy Quet, Jul 07 2008

Keywords

Comments

In other words, except for row 1, row n contains the unitary prime power divisors of n, sorted by the prime. - Franklin T. Adams-Watters, May 05 2011
A034684(n) = smallest term of n-th row; A028233(n) = T(n,1); A053585(n) = T(n,A001221(n)); A008475(n) = sum of n-th row for n > 1. - Reinhard Zumkeller, Jan 29 2013

Examples

			60 has the prime factorization 2^2 * 3^1 * 5^1, so row 60 is (4,3,5).
From _M. F. Hasler_, Oct 12 2018: (Start)
The table starts:
    n : largest prime powers dividing n
    1 :  1
    2 :  2
    3 :  3
    4 :  4
    5 :  5
    6 :  2, 3
    7 :  7
    8 :  8
    9 :  9
   10 :  2, 5
   11 : 11
   12 :  4, 3
   etc. (End)
		

Crossrefs

A027748, A124010 are used in a formula defining this sequence.
Cf. A001221 (row lengths), A008475 (row sums), A028233 (column 1), A034684 (row minima), A053585 (right edge).

Programs

  • Haskell
    a141809 n k = a141809_row n !! (k-1)
    a141809_row 1 = [1]
    a141809_row n = zipWith (^) (a027748_row n) (a124010_row n)
    a141809_tabf = map a141809_row [1..]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    f[{x_, y_}] := x^y; Table[Map[f, FactorInteger[n]], {n, 1, 50}] // Grid (* Geoffrey Critzer, Apr 03 2015 *)
  • PARI
    A141809_row(n)=if(n>1, [f[1]^f[2]|f<-factor(n)~], [1]) \\ M. F. Hasler, Oct 12 2018, updated Aug 19 2022

Formula

T(n,k) = A027748(n,k)^A124010(n,k) for n > 1, k = 1..A001221(n). - Reinhard Zumkeller, Mar 15 2012

A223490 Smallest Fermi-Dirac factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 2, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 2, 25, 2, 3, 4, 29, 2, 31, 2, 3, 2, 5, 4, 37, 2, 3, 2, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 2, 3, 2, 59, 3, 61, 2, 7, 4, 5, 2, 67, 4, 3, 2, 71, 2, 73, 2, 3, 4, 7, 2, 79
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Note that this is not equal to the smallest Fermi-Dirac prime (A050376) dividing n, which is always A020639(n). - Antti Karttunen, Apr 15 2018

Crossrefs

Cf. A223491, A050376, A028233, A000040 (subsequence).
Cf. also A020639.

Programs

  • Haskell
    a223490 = head . a213925_row
    
  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[n_] := Min @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A223490(n) = if(1==n,n,A050376(A001511(A052331(n)))); \\ Antti Karttunen, Apr 15 2018

Formula

a(n) = A213925(n,1).
A209229(A100995(a(n))) = 1; A010055(a(n)) = 1.
From Antti Karttunen, Apr 15 2018: (Start)
a(1) = 1; and for n > 1, a(n) = A050376(A302786(n)).
a(n) = n / A302792(n).
a(n) = A302023(A020639(A302024(n))).
(End)

A056623 If n=LLgggf (see A056192) and a(n) = LL, then its complementary divisor n/LL = gggf and gcd(L^2, n/LL) = 1.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 1, 49, 9
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

The part of the name "Largest unitary square divisor of n" was removed because it is correct only for numbers whose odd exponents in their prime factorization are all smaller than 5. For the correct largest unitary square divisor of n see A350388. - Amiram Eldar, Jul 26 2024

Examples

			a(200) = A008833(200)/A055229(200)^2 = 100/2^2 = 25.
a(250) = A008833(250)/A055229(250)^2 = 25/5^2 = 1.
		

Crossrefs

Programs

Formula

a(n) = A008833(n)/A055229(n)^2 = K^2/g^2, which coincides with the largest square divisor iff the g-factor is 1.
Multiplicative with a(p^e)=p^e for even e, a(p)=1, a(p^e)=p^(e-3) for odd e > 1. - Vladeta Jovovic, Apr 30 2002
From Amiram Eldar, Dec 25 2023 (Start)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-2) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 1/p^(3/2) - 1/p^(5/2) + 1/p^(9/2)) = 1.81133051934001073532... . (End)
a(n) = A056622(n)^2. - Amiram Eldar, Jul 26 2024

Extensions

Name edited by Amiram Eldar, Jul 26 2024

A067695 Smallest prime factor with minimum exponent in canonical prime factorization of n, a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 3, 13, 2, 3, 2, 17, 2, 19, 5, 3, 2, 23, 3, 5, 2, 3, 7, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 7, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 2, 5, 2, 67, 17, 3, 2, 71, 3, 73, 2, 3, 19, 7, 2, 79, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2002

Keywords

Examples

			a(12) = a(2^2 * 3^1) = 3, but A020639(12) = 2;
a(36) = a(2^2 * 3^2) = 2 = A020639(36).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=1, 1, (l-> (m-> min(map(i-> i[1], select(y->
          y[2]=m, l))))(min(map(x-> x[2], l))))(ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 25 2023
  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e}, Min[Select[f, Last[#] == Min[f[[;;, 2]]] &][[;;, 1]]]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n), i=vecmin(f[,2])); f[vecmin(select(x->(x==i), f[,2], 1)), 1]); \\ Michel Marcus, Jul 17 2023
  • Python
    from sympy import factorint
    def A067695(n):
        if n == 1: return 1
        f, g = map(tuple,zip(*sorted(factorint(n).items())))
        return f[g.index(min(g))] # Chai Wah Wu, Feb 07 2023
    

A085231 Numbers k in whose canonical factorization the power of the smallest prime factor is greater than the power of the greatest prime factor.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 120, 135, 144, 160, 168, 175, 176, 189, 192, 208, 224, 240, 275, 280, 288, 297, 315, 320, 325, 336, 351, 352, 360, 384, 405, 416, 425, 448, 459, 475, 480, 504, 513, 528, 539, 544, 560, 567, 575, 576, 608, 621, 624
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

p*a(n) is a term for all primes p with A020639(a(n)) < p < A006530(a(n)).

Examples

			The canonical factorization of 240 is 2^4 * 3 * 5. 2^4 = 16 > 5, therefore 240 is a term.
		

Crossrefs

A085233 is a subsequence.
Subsequence of A102749.

Programs

  • Mathematica
    pfgQ[n_]:=Module[{fe=#[[1]]^#[[2]]&/@FactorInteger[n]},fe[[1]]>fe[[-1]]]; Select[Range[700],pfgQ] (* Harvey P. Dale, Dec 11 2017 *)

Formula

A028233(a(n)) > A053585(a(n)).

Extensions

Edited by Peter Munn, Jun 01 2025

A085232 In canonical prime factorization: power of smallest prime factor is less than power of greatest prime factor.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 46, 50, 51, 52, 54, 55, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

A028233(a(n)) < A053585(a(n));
p*a(n) is a term for all primes p with A020639(a(n))
a(n)=A057714(n-1) for n<28: a(28)=60, A057714(28-1)=62.

Examples

			60 = 2^2 * 3 * 5 with 2^2=4 < 5, therefore 60 is a term.
		

Crossrefs

Cf. A085231.

Programs

  • Mathematica
    spfQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]>1&&fi[[1,1]]^fi[[1,2]] < fi[[-1,1]]^fi[[-1,2]]]; Select[Range[120],spfQ] (* Harvey P. Dale, Jul 30 2018 *)

A085233 Numbers k such that k is divisible by a power of its smallest prime factor that exceeds its square root.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 24, 25, 27, 29, 31, 32, 37, 40, 41, 43, 45, 47, 48, 49, 53, 56, 59, 61, 63, 64, 67, 71, 73, 79, 80, 81, 83, 89, 96, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 135, 137, 139, 144, 149, 151, 157, 160
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Crossrefs

Cf. A028233, A116882\{1} (even terms).
Subsequence of A085231.

Programs

  • Mathematica
    Select[Range[160], #[[1]]^(2 #[[2]]) &@FactorInteger[#][[1]] > # &] (* Ivan Neretin, Dec 30 2015 *)

Formula

A028233(a(n))^2 > a(n).

Extensions

Edited by Peter Munn, Jun 01 2025
Previous Showing 11-20 of 26 results. Next