cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3       4       5       6       7       8       9      10
---|-----------------------------------------------------------------------
m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0
m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1
m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31
m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301
m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701
m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951
m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827
m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987
m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027
m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502
   A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298
.
m\j| ...      11      12      13      14
---|-----------------------------------------
m=0| ...,      0,      0,      0,      0, ... [A000007]
m=1| ...,     15,     50,     60,     24, ... [A028246]
m=2| ...,    180,    390,    360,    120, ... [A053440]
m=3| ...,   1050,   1680,   1260,    360, ... [A294032]
m=4| ...,   4200,   5320,   3360,    840, ...
m=5| ...,  13230,  13860,   7560,   1680, ...
m=6| ...,  35280,  31500,  15120,   3024, ...
m=7| ...,  83160,  64680,  27720,   5040, ...
m=8| ..., 178200, 122760,  47520,   7920, ...
m=9| ..., 353925, 218790,  77220,  11880, ...
         A293476,A293608,A293615,A052762, ...
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30.
.
Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1),
A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1),
A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0),
A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3),
A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1),
A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4),
A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7),
A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0).
A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k),
A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n).
Cf. A293616.

Programs

  • Maple
    A293617 := proc(m, n, k) option remember:
    if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od;
    # Sample uses:
    A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]]
    A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}];
    (* Sample use: *)
    A293926Row[n_] := A293617Row[n, n];

Formula

T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k.
T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m).

A298668 Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0

Views

Author

Alois P. Heinz, Jan 24 2018

Keywords

Examples

			T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1,    1;
  0, 1,    3;
  0, 1,    7,     2;
  0, 1,   15,    12;
  0, 1,   31,    50,     6;
  0, 1,   63,   180,    60;
  0, 1,  127,   602,   390,    24;
  0, 1,  255,  1932,  2100,   360;
  0, 1,  511,  6050, 10206,  3360,  120;
  0, 1, 1023, 18660, 46620, 25200, 2520;
  ...
		

Crossrefs

Columns k=0-11 give (offsets may differ): A000007, A057427, A168604, A028243, A028244, A028245, A032180, A228909, A228910, A228911, A228912, A228913.
Row sums give A229046(n-1) for n>0.
T(2n+1,n+1) gives A000142.
T(2n,n) gives A001710(n+1).

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
          b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..14);
    # second Maple program:
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
          `if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
        end:
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
         If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
    Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)

Formula

T(n,k) = (k-1)! * Stirling2(n-k+1,k) for k>0, T(n,0) = A000007(n).
T(n,k) = Sum_{j=0..k-1} (-1)^j*C(k-1,j)*(k-j)^(n-k) for k>0, T(n,0) = A000007(n).
T(n,k) = (k-1)! * A136011(n,k) for n, k >= 1.
Sum_{j>=0} T(n+j,j) = A076726(n) = 2*A000670(n) = A000629(n) + A000007(n).

A341617 Repair factors for Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 30, 210, 840, 2520, 1260, 13860, 13860, 180180, 90090, 30030, 240240, 4084080, 6126120, 116396280, 58198140, 58198140
Offset: 1

Views

Author

Thomas Ward, Feb 16 2021

Keywords

Comments

a(k) is the smallest number with the property that the sequence (a(k)*S(n+k-1, k))_{n>=1}, viewed as a sequence in n, counts the periodic points of some map. Here S(n, k) denotes the Stirling numbers of the second kind, so S(n, k) is the number of ways to partition a set of n elements into k nonempty subsets.
Because these numbers relate to properties of the Stirling number sequence S(n, k) viewed as a sequence in n, it is natural to think of these values as indexed by k.
The values generated by a finite calculation are inherently empirical, calculated as the least common multiple of the first 3000 terms and then checked for the repair property for period up to 50,000. For smaller values of k (those listed here) various ad hoc arguments can be used to check the empirical candidate values.
The empirical values can be calculated using a simple PARI code, and this only gives a possible candidate value for a(k). If that value happens to be (k-1)! then it is correct. If it is a strict divisor of (k-1)! then further checks are needed for each prime in the quotient (candidate value)/(k-1)!. The potentially unbounded nature of the calculation required would make a proof of a closed formula particularly interesting.
(EMPIRICAL PARI CODE TO GENERATE CANDIDATE VALUES) for(k=1, 40, a=vector(3000, n, stirling(n+k-1, k, 2)); b=vector(length(a), n, (1/n)*sumdiv(n, d, moebius(n/d)*a[d])); print1(denominator(b)", "))

Examples

			The statement that a(3) = 2 means that the sequence of Stirling numbers S_3 = (1, 6, 25, 90, ...) (that is, the sequence A000392 with an offset of 3) does not have the property of counting periodic points for some map, but does have this property after multiplication by 2 (which gives A028243 with an offset of 2), and 2 is the smallest integer with this property. This specific value is immediately known to be exact, because a(3) divides (3-1)! = 2.
		

Crossrefs

Formula

It is known that a(k) divides (k-1)!.
There is an explicit formula for a(k), but it involves an in principle infinite calculation as follows: compute the set of rational numbers {(1/n) Sum_{d|n} mu(n/d)*S(d+k-1, k): n>=1}, and then define a(k) to be the least common multiple of the denominators of that (possibly infinite) set of rational numbers. Here mu denotes the classical Möbius function, and the sum is taken over the divisors d of n. Strictly speaking, any calculation only gives candidate values which are initially only known to be a factor of the real value, which in turn is a factor of (k-1)!. For small values of k listed above ad hoc arguments are needed to check the candidate values evaluated as the least common multiple of the denominators of the first 3000 terms.

A091913 Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k= n, where k=0..max(n-1,0).

Original entry on oeis.org

0, 1, 3, 2, 7, 9, 3, 15, 28, 18, 4, 31, 75, 70, 30, 5, 63, 186, 225, 140, 45, 6, 127, 441, 651, 525, 245, 63, 7, 255, 1016, 1764, 1736, 1050, 392, 84, 8, 511, 2295, 4572, 5292, 3906, 1890, 588, 108, 9, 1023, 5110, 11475, 15240, 13230, 7812, 3150, 840, 135, 10, 2047
Offset: 0

Views

Author

Ross La Haye, Mar 10 2004

Keywords

Comments

Row lengths are 1,1,2,3,4,... = A028310. - M. F. Hasler, Jul 21 2012
Rows: Sum of the n-th row = A001047(n); Sum of the n-th row excluding column 0 = A028243(n+1). Columns: a(n,0) = A000225(n); a(n,1) = A058877(n). Diagonals: a(n,n-2) = A045943(n-1). Also note that the sums of the antidiagonals = A006684.
As an infinite lower triangular matrix * the Bernoulli numbers as a vector (Cf. A027641) = the natural numbers: [1, 2, 3, ...]. The same matrix * the Bernoulli number version starting [1, 1/2, 1/6, ...] = A001787: (1, 4, 12, 32, ...). - Gary W. Adamson, Mar 13 2012

Examples

			Triangle begins
   0;
   1;
   3,   2;
   7,   9,   3;
  15,  28,  18,   4;
  31,  75,  70,  30,   5;
  63, 186, 225, 140,  45,   6;
  ...
a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30.
		

Crossrefs

Formula

For k>=n, a(n, k) = 0; for k < n, a(n, k) = C(n, k) * (2^(n-k) - 1) = Sum [C(n,k) * C(n-k, m), {m=1 to n-k}]. [Formula corrected Aug 22 2006]
The triangle (1; 3,2; 7,9,3; ...) = A007318^2 - A007318, then delete the right border of zeros. - Gary W. Adamson, Nov 16 2007
O.g.f.: 1/( (1 - (1 + x)*t)*(1 - (2 + x)*t) ) = 1 + (3 + 2*x)*t + (7 + 9*x + 3*x^2)*t^2 + .... - Peter Bala, Jul 16 2013

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A134168 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y.

Original entry on oeis.org

1, 3, 9, 30, 111, 438, 1779, 7290, 29871, 121998, 496299, 2011650, 8129031, 32769558, 131850819, 529745610, 2126058591, 8525561118, 34166421339, 136858609170, 548013994551, 2193796224678, 8780408783859, 35137313082330, 140596298752911, 562526359448238, 2250528981434379, 9003386657325090
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Examples

			a(2) = 9 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -35, 50, -24}, {1, 3, 9, 30}, 50] (* or *) Table[(1/2)*(4^n - 3^n + 3*2^n - 1), {n,0,50}] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = (1/2)*(4^n - 3^n + 3*2^n - 1).
a(n) = 3*StirlingS2(n+1,4) +2*StirlingS2(n+1,3) +2*StirlingS2(n+1,2) +1.
G.f.: -(5*x^3 - 14*x^2 + 7*x - 1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jul 30 2012

A285867 Triangle T(n, k) read by rows: T(n, k) = S2(n, k)*k! + S2(n, k-1)*(k-1)! with the Stirling2 triangle S2 = A048993.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 12, 0, 1, 15, 50, 60, 0, 1, 31, 180, 390, 360, 0, 1, 63, 602, 2100, 3360, 2520, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 0, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 0, 1, 1023, 57002, 874500, 5921520, 21538440, 46070640, 59875200, 46569600, 19958400
Offset: 0

Views

Author

Wolfdieter Lang, May 03 2017

Keywords

Comments

This triangle T(n, k) appears in the e.g.f. of the sum of powers SP(n, m) = Sum_{j=0..m} j^n, n >= 0, m >= 0 with 0^0:=1 as ESP(n, t) = exp(t)*(Sum_{k=0..n} T(n, k)*t^k/k! + t^(n+1)/(n+1)), n >= 0.
The sub-triangle T(n, k) for 1 <= k <=n, see A028246(n+1,k) (diagonal not needed).
For S2(n, m)*m! see A131689.
The columns (starting sometimes with n=k) are A000007, A000012, A000225, A028243(n-1), A028244(n-1), A028245(n-1), A032180(n-1), A228909, A228910, A228911, A228912, A228913. See below for the e.g.f.s and o.g.f.s.
The row sums are 1 for n=1 and A000629(n) - n! for n >= 1, See A285868.

Examples

			The triangle T(n, k) begins:
n\k 0  1    2     3      4       5        6        7        8        9  ...
0:  1
1:  0  1
2:  0  1    3
3:  0  1    7    12
4:  0  1   15    50     60
5:  0  1   31   180    390     360
6:  0  1   63   602   2100    3360     2520
7:  0  1  127  1932  10206   25200    31920    20160
8:  0  1  255  6050  46620  166824   317520   332640   181440
9:  0  1  511 18660 204630 1020600  2739240  4233600  3780000  1814400
...
		

Crossrefs

Programs

  • Mathematica
    Table[If[k == 0, Boole[n == 0], StirlingS2[n, k] k! + StirlingS2[n, k - 1] (k - 1)!], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, May 08 2017 *)

Formula

T(n, k) = A131689(n, k) + A131689(n, k-1), 0 <= k <= n, with A131689(n, -1) = 0.
T(0, 0) = 1 and T(n, k) = Stirling2(n+1, k)*(k-1)! for n >= k >= 1. For Stirling2 see A048993. Stirling2(n, k)*(k-1)! = A028246(n, k) for n >= k >= 1.
Recurrence: T(0, 0) = 1, T(n, n) = (n+1)!/2, T(n, -1) = 0, T(n, k) = 0 if n < k, and T(n, k) = (k-1)*T(n-1, k-1) + k*T(n-1, k), for n > k >= 0.
E.g.f. for column k=0 is 1, and for k >= 1: Sum_{j=1..k}((-1)^(k-j) * binomial(k-1, j-1) * exp(j*x)) - x^(k-1).
O.g.f. for column k = 0 is 1, and for k >= 1: ((k-1)!*x^(k-1) / Product_{j=1..k} (1-j*x)) - (k-1)!*x^(k-1).

A350280 Number of bracelets describing topological configurations of points and lines formed by the perpendicular bisectors of the sides of a convex cyclic n-gon.

Original entry on oeis.org

0, 1, 1, 5, 9, 30, 69, 203, 519, 1466, 3933, 11025, 30345, 85190, 238063, 671651, 1895265, 5376856, 15279117, 43568435, 124478129, 356537150, 1023113061, 2941713513, 8472215013, 24439992746, 70604898953, 204253079165, 591631927785, 1715743930880, 4981202429973
Offset: 1

Views

Author

Sanjay Ramassamy, Dec 23 2021

Keywords

Comments

For n>=3, a(n) is the number of topological configurations (up to cyclic shifts and reversal) of n points and n lines, where the points lie at the vertices of a convex cyclic n-gon and the lines are the perpendicular bisectors of its sides. Counting such configurations without quotienting out by cyclic shifts and reversal gives the sequence A028243.
a(n) is also the number of equivalence classes (up to cyclic shifts and reversal) of 2n-tuples composed of n 0's and n 1's which have an interlacing signature. The signature of a 2n-tuple (v_1,...,v_{2n}) is the n-tuple (s_1,...,s_n) defined by s_i=v_i+v_{i+n}. The signature is called interlacing if after deleting the 1's, there are letters remaining and the remaining 0's and 2's are alternating.

Examples

			For n=3, drawing the three perpendicular bisectors of a triangle divides the plane into 6 regions. Three of these regions contain one vertex of the triangle and the other three contain none. Up to cyclic shifts and reversal, the only possible configuration is (nonempty, nonempty, empty, empty, nonempty, empty), thus a(3)=1.
For n=3, the only 6-tuple (up to cyclic shift and reversal) which has interlacing signature is (1,1,0,0,1,0). Its signature is (1,2,0).
For n=4, the a(4)=5 equivalence classes of 8-tuples with interlacing signature are (0,1,0,1,0,1,0,1), (0,0,0,1,0,1,1,1), (0,1,0,1,0,0,1,1), (0,1,1,1,0,0,1,0) and (0,0,1,1,0,1,1,0).
		

Crossrefs

Cf. A028243.

Programs

  • PARI
    \\ here c(n) is up to rotations only.
    c(n)={(n%2==0) + sumdiv(n, d, if(n/d%2==1, eulerphi(n/d)*((3^d - (-1)^d)/2 - 2^d)))/n}
    a(n)={(c(n) + if(n%2==0, 3^(n/2-1)))/2} \\ Andrew Howroyd, Dec 25 2021
    
  • PARI
    seq(n)=Vec((x^2/(1-x^2) + x^2/(1-3*x^2))/2 + sum(k=0, (n-1)\2, my(d=2*k+1); eulerphi(d)*log((1+x^d)*(1-2*x^d)^2/(1-3*x^d) + O(x*x^n))/d)/4, -n) \\ Andrew Howroyd, Dec 25 2021

Formula

From Andrew Howroyd, Dec 25 2021: (Start)
a(n) = (b(n) + (Sum_{d|n, n/d==1 (mod 2)} phi(n/d)*((3^d - (-1)^d)/2 - 2^d))/n)/2 where b(n) = 1 + 3^(n/2-1) for even n and 0 otherwise.
G.f.: (1/2)*(x^2/(1-x^2) + x^2/(1-3*x^2)) + (1/4)*Sum_{k>=0} phi(2*k+1)*log(B(x^(2*k+1)))/(2*k+1) where B(x) = (1+x)*(1-2*x)^2/(1-3*x).
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 25 2021

A118979 O.g.f: -12*x^3/(-1+x)/(-1+2*x)/(-1+3*x) = -2-2/(-1+3*x)-6/(-1+x)+6/(-1+2*x) .

Original entry on oeis.org

12, 72, 300, 1080, 3612, 11592, 36300, 111960, 342012, 1038312, 3139500, 9467640, 28501212, 85700232, 257493900, 773268120, 2321377212, 6967277352, 20908123500, 62736953400, 188236026012, 564758409672, 1694375892300
Offset: 3

Views

Author

Roger L. Bagula, May 25 2006

Keywords

Comments

Negative of the determinant of a series of 3 X 3 matrices, related to Stirling's numbers of the second kind by a factor of 12 (cf. A000392, A028243).

Crossrefs

Programs

  • Mathematica
    M = {{1, 1, 1}, {2^n, 4, 2}, {3^n, 9, 3}} a = Table[ -Det[M], {n, 3, 30}]

Formula

Let M = {{1, 1, 1}, {2^n, 4, 2}, {3^n, 9, 3}}. Then a(n) = -Det[M]
a(n) = 6*(1-2^n)+2*3^n = 12*A000392(n).

Extensions

Edited by N. J. A. Sloane, Dec 13 2007

A134063 a(n) = (1/2)*(3^n - 2^(n+1) + 3).

Original entry on oeis.org

1, 1, 2, 7, 26, 91, 302, 967, 3026, 9331, 28502, 86527, 261626, 788971, 2375102, 7141687, 21457826, 64439011, 193448102, 580606447, 1742343626, 5228079451, 15686335502, 47063200807, 141197991026, 423610750291, 1270865805302, 3812664524767, 11438127792026
Offset: 0

Views

Author

Ross La Haye, Jan 11 2008

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n-1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 2) x = y.
The inverse binomial transform yields A033484 with another leading 1. - R. J. Mathar, Jul 06 2009

Examples

			a(3) = 7 because for P(A) = {{},{1},{2},{1,2}} we have: case 0 {{1},{2}}, case 1 {{1},{1,2}}, {{2},{1,2}}, case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}.
		

Crossrefs

Programs

  • Maple
    f := n -> (1/2)*(3^n - 2^(n+1) + 3);
  • Mathematica
    Table[(3^n-2^(n+1)+3)/2,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,1,2},30] (* Harvey P. Dale, May 05 2020 *)

Formula

a(n) = 3*StirlingS2(n,3) + StirlingS2(n,2) + 1.
a(n) = StirlingS2(n+1,3) + 1. - Ross La Haye, Jan 21 2008
a(n) = 6 a(n-1)-11 a(n-2) +6 a(n-3) (n >= 3). Also a(n) = 4 a(n-1)-3 a(n-2)+ 2^{n-2} (n >= 3). - Tian-Xiao He (the(AT)iwu.edu), Jul 02 2009
G.f.: -(1-4*x+6*x^2)/((x-1)*(3*x-1)*(2*x-1)). a(n+1)-a(n)=A001047(n+1). [R. J. Mathar, Jul 06 2009]

Extensions

Edited by N. J. A. Sloane, Jul 06 2009

A134064 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 2) x = y.

Original entry on oeis.org

1, 2, 6, 23, 96, 407, 1716, 7163, 29616, 121487, 495276, 2009603, 8124936, 32761367, 131834436, 529712843, 2125993056, 8525430047, 34166159196, 136858084883, 548012945976, 2193794127527, 8780404589556, 35137304693723, 140596281975696, 562526325893807, 2250528914325516
Offset: 0

Views

Author

Ross La Haye, Jan 11 2008

Keywords

Examples

			a(2) = 6 because for P(A) = {{},{1},{2},{1,2}} we have for case 1 {{1},{1,2}}, {{2},{1,2}} and we have for case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 0.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{1,2,6,23},30] (* Harvey P. Dale, Jul 04 2023 *)
  • PARI
    Vec((1-8*x+21*x^2-17*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Oct 30 2015

Formula

a(n) = (1/2)(4^n - 3^n + 2^n + 1) = 3*StirlingS2(n+1,4) + 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1.
a(n) = C(2^n + 1,2) - (1/2)(3^n - 1) = StirlingS2(2^n + 1,2^n) - StirlingS2(n+1,3) - StirlingS2(n+1,2). - Ross La Haye, Jan 21 2008
G.f.: (1-8*x+21*x^2-17*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). - Colin Barker, Jul 30 2012
Previous Showing 21-30 of 33 results. Next