A320892
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.
Original entry on oeis.org
16, 64, 81, 96, 144, 160, 224, 256, 324, 352, 384, 400, 416, 486, 544, 576, 608, 625, 640, 729, 736, 784, 864, 896, 928, 960, 992, 1024, 1184, 1215, 1296, 1312, 1344, 1376, 1408, 1440, 1504, 1536, 1600, 1664, 1696, 1701, 1888, 1936, 1944, 1952, 2016, 2025
Offset: 1
A complete list of all factorizations of 1296 into semiprimes is:
1296 = (4*4*9*9)
1296 = (4*6*6*9)
1296 = (6*6*6*6)
None of these is strict, so 1296 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A025487,
A028260,
A045778,
A318871,
A318953,
A320462,
A320655,
A320656,
A320891,
A320893,
A320894,
A322353.
-
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
-
A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s));
isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ Antti Karttunen, Dec 06 2018
A046337
Odd numbers with an even number of prime factors (counted with multiplicity).
Original entry on oeis.org
1, 9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 81, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 135, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 189, 201, 203, 205, 209, 213, 215, 217, 219, 221, 225, 235, 237, 247, 249, 253, 259
Offset: 1
-
Select[Range[1,301,2],EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Jul 25 2011 *)
-
lista(nn) = {forstep(n=1, nn, 2, if (bigomega(n) % 2 == 0, print1(n, ", ")));} \\ Michel Marcus, Jul 04 2015
A235992
Numbers with an even arithmetic derivative, cf. A003415.
Original entry on oeis.org
0, 1, 4, 8, 9, 12, 15, 16, 20, 21, 24, 25, 28, 32, 33, 35, 36, 39, 40, 44, 48, 49, 51, 52, 55, 56, 57, 60, 64, 65, 68, 69, 72, 76, 77, 80, 81, 84, 85, 87, 88, 91, 92, 93, 95, 96, 100, 104, 108, 111, 112, 115, 116, 119, 120, 121, 123, 124, 128, 129, 132, 133
Offset: 1
Union of
A359829 (primitive elements) and
A359831 (nonprimitive elements).
-
a235992 n = a235992_list !! (n-1)
a235992_list = filter (even . a003415) [0..]
-
Select[Range[0, 133], EvenQ@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]] &] (* Michael De Vlieger, Sep 30 2019 *)
-
from itertools import count, islice
from sympy import factorint
def A235992_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n: not n&3 or (n&1 and not sum(factorint(n).values())&1), count(max(startvalue,0)))
A235992_list = list(islice(A235992_gen(),40)) # Chai Wah Wu, Nov 04 2022
A340387
Numbers whose sum of prime indices is twice their number, counted with multiplicity in both cases.
Original entry on oeis.org
1, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 208, 243, 252, 264, 270, 280, 300, 544, 624, 729, 756, 784, 792, 810, 840, 880, 900, 1000, 1216, 1632, 1872, 2080, 2187, 2268, 2352, 2376, 2430, 2464, 2520, 2640, 2700, 2800, 2944, 3000, 3648, 4896, 5440, 5616
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
9: {2,2}
10: {1,3}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
81: {2,2,2,2}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
208: {1,1,1,1,6}
243: {2,2,2,2,2}
252: {1,1,2,2,4}
Partitions of 2n into n parts are counted by
A000041.
The number of prime indices alone is
A001222.
The sum of prime indices alone is
A056239.
Allowing sum to be any multiple of length gives
A067538, ranked by
A316413.
A301987 lists numbers whose sum of prime indices equals their product, with nonprime case
A301988.
Cf.
A000720,
A001221,
A001414,
A006125,
A006129,
A112798,
A316428,
A320911,
A325037,
A325044,
A330950,
A331385,
A331416.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Total[primeMS[#]]==2*PrimeOmega[#]&]
A119899
Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 24, 26, 33, 34, 35, 38, 39, 40, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 104, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140, 141, 142, 143, 145, 146, 150
Offset: 1
From _Gus Wiseman_, Jun 20 2021: (Start)
The sequence of terms together with their prime indices begins:
6: {1,2} 51: {2,7} 86: {1,14}
10: {1,3} 54: {1,2,2,2} 87: {2,10}
14: {1,4} 55: {3,5} 88: {1,1,1,5}
15: {2,3} 56: {1,1,1,4} 90: {1,2,2,3}
21: {2,4} 57: {2,8} 91: {4,6}
22: {1,5} 58: {1,10} 93: {2,11}
24: {1,1,1,2} 60: {1,1,2,3} 94: {1,15}
26: {1,6} 62: {1,11} 95: {3,8}
33: {2,5} 65: {3,6} 96: {1,1,1,1,1,2}
34: {1,7} 69: {2,9} 104: {1,1,1,6}
35: {3,4} 74: {1,12} 106: {1,16}
38: {1,8} 77: {4,5} 111: {2,12}
39: {2,6} 82: {1,13} 115: {3,9}
40: {1,1,1,3} 84: {1,1,2,4} 118: {1,17}
46: {1,9} 85: {3,7} 119: {4,7}
(End)
Positions of negative terms in
A316524.
The partitions with these Heinz numbers are counted by
A344608.
Cf.
A000041,
A000070,
A000097,
A027187,
A103919,
A116406,
A239829,
A239830,
A343941,
A344607,
A344651.
-
Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* Harvey P. Dale, Jan 24 2013 *)
A320912
Numbers with an even number of prime factors (counted with multiplicity) that can be factored into distinct semiprimes.
Original entry on oeis.org
1, 4, 6, 9, 10, 14, 15, 21, 22, 24, 25, 26, 33, 34, 35, 36, 38, 39, 40, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 100, 104, 106, 111, 115, 118, 119, 121, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140
Offset: 1
9000 is in the sequence and can be factored in either of two ways: (4*6*15*25) or (4*9*10*25).
-
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],strsemfacs[#]!={}]&]
A344609
Numbers whose alternating sum of prime indices is >= 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 102, 103, 105, 107
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 20: {1,1,3} 45: {2,2,3}
2: {1} 23: {9} 47: {15}
3: {2} 25: {3,3} 48: {1,1,1,1,2}
4: {1,1} 27: {2,2,2} 49: {4,4}
5: {3} 28: {1,1,4} 50: {1,3,3}
7: {4} 29: {10} 52: {1,1,6}
8: {1,1,1} 30: {1,2,3} 53: {16}
9: {2,2} 31: {11} 59: {17}
11: {5} 32: {1,1,1,1,1} 61: {18}
12: {1,1,2} 36: {1,1,2,2} 63: {2,2,4}
13: {6} 37: {12} 64: {1,1,1,1,1,1}
16: {1,1,1,1} 41: {13} 66: {1,2,5}
17: {7} 42: {1,2,4} 67: {19}
18: {1,2,2} 43: {14} 68: {1,1,7}
19: {8} 44: {1,1,5} 70: {1,3,4}
For example, the prime indices of 70 are {1,3,4} with alternating sum 1 - 3 + 4 = 2, so 70 is in the sequence. On the other hand, the prime indices of 24 are {1,1,1,2} with alternating sum 1 - 1 + 1 - 2 = -1, so 24 is not in the sequence.
Permutations of prime indices of these terms are counted by
A116406.
Complement of
A119899, Heinz numbers of the partitions counted by
A344608.
Heinz numbers of the partitions counted by
A344607.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse:
A344616).
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.
Cf.
A001222,
A001250,
A003242,
A005649,
A026424,
A071321/
A071322,
A124754,
A239829,
A343938,
A344611,
A344651,
A344653/
A344742,
A344739.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[100],ats[primeMS[#]]>=0&]
A325700
Numbers with as many distinct even as distinct odd prime indices.
Original entry on oeis.org
1, 6, 12, 14, 15, 18, 24, 26, 28, 33, 35, 36, 38, 45, 48, 51, 52, 54, 56, 58, 65, 69, 72, 74, 75, 76, 77, 86, 93, 95, 96, 98, 99, 104, 106, 108, 112, 116, 119, 122, 123, 135, 141, 142, 143, 144, 145, 148, 152, 153, 158, 161, 162, 172, 175, 177, 178, 185, 192
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
6: {1,2}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
45: {2,2,3}
48: {1,1,1,1,2}
51: {2,7}
52: {1,1,6}
54: {1,2,2,2}
56: {1,1,1,4}
58: {1,10}
Cf.
A001221,
A026010,
A028260,
A045931,
A063886,
A097613,
A112798,
A130780,
A239241,
A241638,
A325698,
A325699.
A320891
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into squarefree semiprimes.
Original entry on oeis.org
4, 9, 16, 24, 25, 40, 49, 54, 56, 64, 81, 88, 96, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 224, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 361, 375, 376, 384, 400, 416, 424, 459, 472, 486, 488, 513, 528, 529, 536, 544, 560
Offset: 1
A complete list of all factorizations of 24 is:
(2*2*2*3),
(2*2*6), (2*3*4),
(2*12), (3*8), (4*6),
(24).
All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320892,
A320893,
A320894.
-
semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],semfacs[#]=={}]&]
A320894
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct squarefree semiprimes.
Original entry on oeis.org
4, 9, 16, 24, 25, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459, 472, 484
Offset: 1
A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24). All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320891,
A320892,
A320893.
-
strsqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsqfsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],strsqfsemfacs[#]=={}]&]
Comments