cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A126671 Triangle read by rows: row n (n>=0) has g.f. Sum_{i=1..n} n!*x^i*(1+x)^(n-i)/(n+1-i).

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 2, 7, 11, 0, 6, 26, 46, 50, 0, 24, 126, 274, 326, 274, 0, 120, 744, 1956, 2844, 2556, 1764, 0, 720, 5160, 16008, 28092, 30708, 22212, 13068, 0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584, 0, 40320
Offset: 1

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

The first nonzero column gives the factorial numbers, which are Stirling_1(*,1), the rightmost diagonal gives Stirling_1(*,2), so this triangle may be regarded as interpolating between the first two columns of the Stirling numbers of the first kind.
This is a slice (the right-hand wall) through the infinite square pyramid described in the link. The other three walls give A007318 and A008276 (twice).
The coefficients of the A165674 triangle are generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). The a(n) formulas for the coefficients in the right hand columns of this triangle lead to Wiggen's triangle A028421 and their o.g.f.s. lead to the sequence given above. Some right hand columns of the A165674 triangle are A080663, A165676, A165677, A165678 and A165679. - Johannes W. Meijer, Oct 07 2009

Examples

			Triangle begins:
0,
0, 1,
0, 1, 3,
0, 2, 7, 11,
0, 6, 26, 46, 50,
0, 24, 126, 274, 326, 274,
0, 120, 744, 1956, 2844, 2556, 1764,
0, 720, 5160, 16008, 28092, 30708, 22212, 13068,
0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584,
0, 40320, 367920, 1498320, 3582000, 5562576, 5868144, 4292496, 2239344, 1026576, ...
		

Crossrefs

Columns give A000142, A108217, A126672; diagonals give A000254, A067318, A126673. Row sums give A126674. Alternating row sums give A000142.
See A126682 for the full pyramid of coefficients of the underlying polynomials.

Programs

  • Maple
    for n from 1 to 15 do t1:=add( n!*x^i*(1+x)^(n-i)/(n+1-i), i=1..n); series(t1,x,100); lprint(seriestolist(%)); od:
  • Mathematica
    Join[{{0}}, Reap[For[n = 1, n <= 15, n++, t1 = Sum[n!*x^i*(1+x)^(n-i)/(n+1-i), {i, 1, n}]; se = Series[t1, {x, 0, 100}]; Sow[CoefficientList[se, x]]]][[2, 1]]] // Flatten (* Jean-François Alcover, Jan 07 2014, after Maple *)

Formula

Recurrence: T(n,0) = 0; for n>=0, i>=1, T(n+1,i) = (n+1)*T(n,i) + n!*binomial(n,i).
E.g.f.: x*log(1-(1+x)*y)/(x*y-1)/(1+x). - Vladeta Jovovic, Feb 13 2007

A163934 Triangle related to the asymptotic expansion of E(x,m=4,n).

Original entry on oeis.org

1, 6, 4, 35, 40, 10, 225, 340, 150, 20, 1624, 2940, 1750, 420, 35, 13132, 27076, 19600, 6440, 980, 56, 118124, 269136, 224490, 90720, 19110, 2016, 84, 1172700, 2894720, 2693250, 1265460, 330750, 48720, 3780, 120
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931 while the general formula for their asymptotic expansion can be found in A163932.
We used the latter formula and the asymptotic expansion of E(x,m=3,n), see A163932, to determine that E(x,m=4,n) ~ (exp(-x)/x^4)*(1 - (6+4*n)/x + (35+40*n+ 10*n^2)/x^2 - (225+340*n+ 150*n^2+20*n^3)/x^3 + ... ). This formula leads to the triangle coefficients given above.
The asymptotic expansion leads for the values of n from one to five to known sequences, see the cross-references.
The numerators of the o.g.f.s. of the right hand columns of this triangle lead for z=1 to A000457, see A163939 for more information.
The first Maple program generates the sequence given above and the second program generates the asymptotic expansion of E(x,m=4,n).

Examples

			The first few rows of the triangle are:
1;
6, 4;
35, 40, 10;
225, 340, 150, 20;
		

Crossrefs

Cf. A163931 (E(x,m,n)), A163932 and A163939.
Cf. A048994 (Stirling1), A000454 (row sums).
A000399, 4*A000454, 10*A000482, 20*A001233, 35*A001234 equal the first five left hand columns.
A000292, A027777 and A163935 equal the first three right hand columns.
The asymptotic expansion leads to A000454 (n=1), A001707 (n=2), A001713 (n=3), A001718 (n=4) and A001723 (n=5).
Cf. A130534 (m=1), A028421 (m=2), A163932 (m=3).

Programs

  • Maple
    with(combinat): A163934 := proc(n,m): (-1)^(n+m)* binomial(m+2, 3) *stirling1(n+2, m+2) end: seq(seq(A163934(n,m), m=1..n), n=1..8);
    with(combinat): imax:=6; EA:=proc(x,m,n) local E, i; E:=0: for i from m-1 to imax+2 do E:=E + sum((-1)^(m+k+1)*binomial(k,m-1)*n^(k-m+1)* stirling1(i, k), k=m-1..i)/x^(i-m+1) od: E:= exp(-x)/x^(m)*E: return(E); end: EA(x,4,n);
    # Maple programs revised by Johannes W. Meijer, Sep 11 2012
  • Mathematica
    a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+2, 3] * StirlingS1[n+2, m+2]; Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]] (* Jean-François Alcover, Jun 01 2011, after formula *)

Formula

a(n,m) = (-1)^(n+m)*C(m+2,3)*stirling1(n+2,m+2) for n >= 1 and 1<= m <= n.

A105954 Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0

Views

Author

Leroy Quet, Jun 26 2005

Keywords

Comments

Antidiagonal sums are A093345 (n! * (1 + Sum_{i=1..n}((1/i)*Sum_{j=0..i-1} 1/j!))). - Gerald McGarvey, Aug 27 2005
A recasting of A093905 and A067176. - R. J. Mathar, Mar 01 2009
The triangular array of this sequence is the reversal of A165675 which is related to the asymptotic expansion of the higher order exponential integral E(x,m=2,n); see also A165674. - Johannes W. Meijer, Oct 16 2009

Examples

			A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
  [n\k]  0       1       2        3        4        5          6
  -------------------------------------------------------------------
  [0]    1,      1,      1,       1,       1,       1,         1, ...
  [1]    1,      3,      5,       7,       9,       11,       13, ...
  [2]    2,     11,     26,      47,      74,      107,      146, ...
  [3]    6,     50,    154,     342,     638,     1066,     1650, ...
  [4]   24,    274,   1044,    2754,    5944,    11274,    19524, ...
  [5]  120,   1764,   8028,   24552,   60216,   127860,   245004, ...
  [6]  720,  13068,  69264,  241128,  662640,  1557660,  3272688, ...
  [7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
		

Crossrefs

Column 0 = A000142 (factorial numbers).
Column 1 = A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 = A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 = A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 = A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 = A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
Column 6 = A051524 (2nd unsigned column of A051338) starting at n=1.
Column 7 = A051545 (2nd unsigned column of A051339) starting at n=1.
Column 8 = A051560 (2nd unsigned column of A051379) starting at n=1.
Column 9 = A051562 (2nd unsigned column of A051380) starting at n=1.
Column 10= A051564 (2nd unsigned column of A051523) starting at n=1.
2nd row is A005408 (2n - 1, starting at n=1).
3rd row is A080663 (3n^2 - 1, starting at n=1).
Main diagonal gives A384024.

Programs

  • Maple
    H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
    # Alternative with standard harmonic number:
    A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
    for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
    # Alternative with hypergeometric formula:
    A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
    seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
  • Mathematica
    H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
    Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
    (* Robert G. Wilson v, Jun 27 2005 *)
  • PARI
    a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025

Formula

A(n, k) = (Harmonic(n + k) - Harmonic(k - 1))*(n + k)!/(k - 1)! if k > 0, otherwise n!.
From Gerald McGarvey, Aug 27 2005, edited by Peter Luschny, Jul 02 2022: (Start)
E.g.f. for column k: -log(1 - x)/(x*(1 - x)^k).
Row 3 is r(n) = 4*n^3 + 18*n^2 + 22*n + 6.
Row 4 is r(n) = 5*n^4 + 40*n^3 + 105*n^2 + 100*n + 24.
Row 5 is r(n) = 6*n^5 + 75*n^4 + 340*n^3 + 675*n^2 + 548*n + 120.
Row 6 is r(n) = 7*n^6 + 126*n^5 + 875*n^4 + 2940*n^3 + 4872*n^2 + 3528*n + 720.
Row 7 is r(n) = 8*n^7 + 196*n^6 + 1932*n^5 + 9800*n^4 + 27076*n^3 + 39396*n^2 + 26136*n + 5040.
The sum of the polynomial coefficients for the n-th row is |S1(n, 2)|, which are the unsigned Stirling1 numbers which appear in column 1.
A(m, n) = Sum_{k=1..m} n*A094645(m, n)*(n+1)^(k-1). (A094645 is Generalized Stirling number triangle of first kind, e.g.f.: (1-y)^(1-x).) (End)
In Gerard McGarvey's formulas for the row coefficients we find Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; see A165674. - Johannes W. Meijer, Oct 16 2009
A(n, k) = (n + 1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k + 1], 1). - Peter Luschny, Jul 01 2022
A(n,k) = [x^n] Product_{j=0..n} (1 + (j+k)*x). - Seiichi Manyama, May 19 2025

Extensions

More terms from Robert G. Wilson v, Jun 27 2005
Edited by Peter Luschny, Jul 02 2022

A139526 Triangle A061356 read right to left.

Original entry on oeis.org

1, 1, 2, 1, 6, 9, 1, 12, 48, 64, 1, 20, 150, 500, 625, 1, 30, 360, 2160, 6480, 7776, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 56, 1344, 17920, 143360, 688128, 1835008, 2097152, 1, 72, 2268, 40824, 459270, 3306744, 14880348, 38263752, 43046721, 1, 90, 3600, 84000, 1260000, 12600000, 84000000, 360000000, 900000000, 1000000000
Offset: 2

Views

Author

Alford Arnold, Apr 24 2008

Keywords

Comments

Related to the two Appell sequences the Bernoulli polynomials B(n,x) and their umbral compositional inverses (cf. A074909) Up(n,x) = [(x+1)^(n+1)-x^(n+1)] / (n+1). With offset 0, the row polynomials of this entry P(n,x) = (Up(n,0))^(-n) * [x + Up(n,0)]^n = (n+1)^n * [x + 1/(n+1)]^n. Compare to the Abel polynomials of A061356, which are also an Appell sequence. - Tom Copeland, Nov 14 2014

Examples

			(1) times (1) = (1)
(1 1) * (1 2) = (1 2)
(1 2 1 ) * (1 3 9) = (1 6 9)
(1 3 3 1) * (1 4 16 64) = (1 12 48 64)
etc.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA. Second ed. 1994.
  • Peter D. Schumer (2004), Mathematical Journeys, page 168, Proposition 16.1 (c)

Crossrefs

Cf. A000272 (row sums), A061356 (row reverse), A028421, A074909, A000169 (main diagonal), A251592, A260687.

Programs

  • Maple
    A061356 := proc(n,k) binomial(n-2,k-1)*(n-1)^(n-k-1); end: A139526 := proc(n,k) A061356(n,n-k-1) ; end: for n from 2 to 14 do for k from 0 to n-2 do printf("%d,",A139526(n,k)) ; od: od: # R. J. Mathar, May 22 2008
  • Mathematica
    T[n_, k_] := (n - 1)^k*Binomial[n - 2, n - k - 2];
    Table[T[n, k], {n, 2, 11}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Jun 13 2023 *)
  • PARI
    for(n=2,12,forstep(k=n-1,1,-1,print1(binomial(n-2, k-1)*(n-1)^(n-k-1)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2008

Formula

E.g.f. (with offset 1) Sum_{n >= 1} (1 + n*t)^(n-1)*x^n/n! = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 9*t^2)*x^3/3! + .... For properties of this function see Graham et al., equations 5.60, 5.61 and 7.71. The e.g.f. is the series reversion with respect to x of the function log(1 + x)/(1 + x)^t, which is the e.g.f. for a signed version of A028421. - Peter Bala, Jul 18 2013
From Peter Bala, Nov 16 2015: (Start)
E.g.f. with offset 0 and constant term 1: A(x,t) = ( Sum_{n >= 0} (n + 1)^(n-1)*t^n*x^n/n! )^(1/t). This is the generalized exponential series E_t(x) in the terminology of Graham et al., Section 5.4.
A(x,t)^m = 1 + Sum_{n >= 1} m*(m + n*t)^(n-1)*x^n/n!.
log(A(x,t)) = Sum_{n >= 1} (n*t)^(n-1)*x^n/n! = 1/t*T(t*x), where T(z) is Euler's tree function. See A000169.
A(x,t) = ( 1/x* Revert( x*exp(-x*t)) )^(1/t), where Revert is the series reversion operator with respect to x.
In the notation of the Bala link the e.g.f. is I^t(e^x), where I^t is a fractional series inversion operator. Cf. A251592, which has o.g.f. I^t(1 + x), and A260687, which has o.g.f. I^t(1/(1 - x)). (End)

Extensions

More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A165676 Fourth right hand column of triangle A165674.

Original entry on oeis.org

50, 154, 342, 638, 1066, 1650, 2414, 3382, 4578, 6026, 7750, 9774, 12122, 14818, 17886, 21350, 25234, 29562, 34358, 39646, 45450, 51794, 58702, 66198, 74306, 83050, 92454, 102542, 113338, 124866, 137150, 150214, 164082, 178778
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = 6 + 22*n + 18*n^2 + 4*n^3
Gf(z) = (0*z^5 - 6*z^4 + 26*z^3 - 46*z^2 + 50*z)/(z-1)^4

A165677 Fifth right hand column of triangle A165674.

Original entry on oeis.org

274, 1044, 2754, 5944, 11274, 19524, 31594, 48504, 71394, 101524, 140274, 189144, 249754, 323844, 413274, 520024, 646194, 794004, 965794, 1164024, 1391274, 1650244, 1943754, 2274744, 2646274, 3061524, 3523794, 4036504
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5)
a(n) = 24 + 100*n + 105*n^2 + 40*n^3 + 5*n^4
Gf(z) = (0*z^6 - 24*z^5 + 126*z^4 - 274*z^3 + 326*z^2 - 274*z)/(z-1)^5

A165678 Sixth right hand column of triangle A165674.

Original entry on oeis.org

1764, 8028, 24552, 60216, 127860, 245004, 434568, 725592, 1153956, 1763100, 2604744, 3739608, 5238132, 7181196, 9660840, 12780984, 16658148, 21422172, 27216936, 34201080, 42548724, 52450188, 64112712, 77761176, 93638820
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1764,8028,24552,60216,127860,245004},30] (* Harvey P. Dale, Jun 18 2024 *)

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5.
Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6.

A165679 Seventh right hand column of triangle A165674.

Original entry on oeis.org

13068, 69264, 241128, 662640, 1557660, 3272688, 6314664, 11393808, 19471500, 31813200, 50046408, 76223664, 112890588, 163158960, 230784840, 320251728, 436858764, 586813968, 777332520, 1016740080, 1314581148, 1681732464
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{13068,69264,241128,662640,1557660,3272688,6314664},30] (* Harvey P. Dale, Aug 24 2012 *)

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7* a(n-6) + a(n-7)
a(n) = 720 + 3528*n + 4872*n^2 + 2940*n^3 + 875*n^4 + 126*n^5 +7*n^6
Gf(z) = (0*z^8 - 720*z^7 + 5160*z^6 - 16008*z^5 + 28092*z^4 - 30708*z^3 + 22212*z^2 - 13068*z)/(z-1)^7

A321331 Triangle read by rows: T(n, k) = (k+1)*S2(n+1, k+1), for n >= k >= 0, and S2 = A048993 (Stirling2).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 14, 18, 4, 1, 30, 75, 40, 5, 1, 62, 270, 260, 75, 6, 1, 126, 903, 1400, 700, 126, 7, 1, 254, 2898, 6804, 5250, 1596, 196, 8, 1, 510, 9075, 31080, 34755, 15876, 3234, 288, 9, 1, 1022, 27990, 136420, 212625, 136962, 41160, 6000, 405, 10, 1, 2046, 85503, 583000, 1233650, 1076922, 447909, 95040, 10395, 550, 11
Offset: 0

Views

Author

Wolfdieter Lang, Dec 03 2018

Keywords

Comments

This lower triangular matrix T is the inverse of the triangular matrix with elements Narumi[-1](n,m)/(m+1) = S1(n+1, m+1)/(n+1), with the Narumi triangle for parameter a = -1, and S1 = A048994 (Stirling1), i.e., Sum_{k=m..n} T(n, k) * S1(k+1, m+1)/(k+1) = delta_{n,m} (Kronecker symbol).
This triangle arises from the inverse of the rational Sheffer matrix Narumi[-1] = (log(1+x)/x, log(1+x) (such special Sheffer matrices (g(x), x*g(x)) define elements of the Narumi subgroup). The inverse matrix is (Narumi[-1])^(-1) = ((exp(x) - 1)/x, exp(x) - 1).
In order to have an integer matrix one takes T(n, k) := (n+1)*(Narumi[-1])^(-1)(n, k) = (k+1)*S2(n+1, k+1). The connection to S2 = A048993 results from the general relation between each Narumi-type matrix N = (g(x), x*g(x)) and its associated Sheffer matrix J = (1, x*g(x)) (this is of the Jabotinsky-type), i.e., N(n, m) = (m+1)*J(n+1, m+1)/(n+1), or with the row polynomials Npol(n, x) = (1/(n+1))*(d/dx)Jpol(n+1, x).
The signed triangle (-1)^(n-k)*A028421(n, k) (with upper diagonals filled with zeros) gives the integer matrix Nscaled with elements (n+1)*Narumi[-1](n,k). This inverse of Nscaled has the rational elements (Narumi[-1])^(-1)(k, m)/(m+1) = (1/(k+1))*S2(k+1, m+1).
The a- and z- sequence for the Sheffer matrix (Narumi[-1])^(-1) (see A006232 for a link on these sequences) have e.g.f.s Ea(x) = x/log(1 + x) and Ez(x) = 1/log(1 + x) - 1/x, hence a(n) = A006232(n)/A006233(n) and z(n) = A006232(n+1)/A075178(n), for n >= 0. This leads to the recurrence for T(n, k) given in the formula section.
The Boas-Buck-type column recurrence (see the link, also for references) uses the sequence with o.g.f. GBB(y) = exp(y)/(exp(y) - 1) - 1/y, with BB(n) = (-1)^(n+1)*A060054(n+1 ) / A227830(n+1), for n >= 1. For the recurrence see the formula section.
The Meixner-type identity (see the Meixner link) for the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, derived from the one for the Narumi[-1]^(-1) row polynomials is Sum_{k=1..n} (-1)^{k+1}*(1/k)*(d/dx)^k R(n, x)/(n+1) = R(n-1, x), for n >= 1, and R(0, x) = 1. Here d/dx is a differentiation operator.
The Roman-type recurrence for the row polynomials (see the reference, Corollary 3.7.2. p. 50) becomes, with the z-sequence from above: R(n, x) = ((n+1)/n)*{(x + 1/2)*1 + (x - z(1))*d/dx - Sum_{k=2..n-1} (1/k!)*z(k)*(d/dx)^k}*R(n-1, x), for n >= 1, and R(0, x) = 1.
The triangle is the exponential Riordan square (cf. A321620) of exp(x)-1 with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
  n\k  0    1     2      3       4       5      6     7     8   9 10 ...
  ----------------------------------------------------------------------
  0:   1
  1:   1    2
  2:   1    6     3
  3:   1   14    18      4
  4:   1   30    75     40       5
  5:   1   62   270    260      75       6
  6:   1  126   903   1400     700     126      7
  7:   1  254  2898   6804    5250    1596    196     8
  8:   1  510  9075  31080   34755   15876   3234   288     9
  9:   1 1022 27990 136420  212625  136962  41160  6000   405  10
  10:  1 2046 85503 583000 1233650 1076922 447909 95040 10395 550 11
  ...
Recurrence (from Stirling2): T(4, 2) = 3*(T(3, 2) + T(3, 1)/2) = 3*(18 + 14/2) = 75.
Recurrence (from a- and z-sequence): T(4, 0) = 5*((1/2)*T(3, 0) - (1/12)*T(3, 1) + (1/12)*T(3, 2) - (19/120)*T(3, 3)) = 5*(1/2 - 14/12 + 18/12 - 4*19/120) = 1; T(4,2) = (5/2)*(1*1*T(3, 1) + 2*(1/2)*T(3, 2) + 3*(-1/6)* T(3, 3)) = (5/2)*(14 + 18 - 2) = 75.
Recurrence for column k=2 (Boas-Buck-type): T(4, 2) = (5!*3/2)*((1/3!)*(1/12)*T(2, 2) + (1/4!)*(1/2)*T(3, 2)) = (5!*3/2)*((1/72)*3 + (1/48)*18) = 75.
Meixner identity for the row polynomials, for n = 3: {d/dx  - (1/2)*(d/dx)^2 + (1/3)*(d/dx)^3)}*R(3, x)/4) = ((14 - 36/2 + 24/3) + (36 - 24/2)*x + 12*x^2)/4 = (1 + 6*x + 3*x^2) = R(2, x).
Roman type recurrence for row polynomials: R(n, 3) = (3/2)*{(x + 1/12)*(1 + 6*x + 3*x^2) + (x - (-1/2))*(6 + 6*x) - (1/2!)*(1/12)*6} = 1 + 14*x + 18*x^2 + 4*x^3.
		

References

  • Steven Roman, The umbral calculus, Academic Press, 1984.

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)*Stirling2(n+1,k+1)))); # Muniru A Asiru, Dec 03 2018
    
  • Maple
    T:=(n,k)->(k+1)*Stirling2(n+1,k+1): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 03 2018
  • Mathematica
    T[n_, k_] := (k+1) * StirlingS2[n+1, k+1];  Table[T[n, k], {n,0,10}, {k, 0, n}] //Flatten (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    T(n, k) = (k+1)*stirling(n+1, k+1, 2) \\ Thomas Scheuerle, Nov 10 2023
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(exp(x) - 1, 10, True) # Peter Luschny, Jan 03 2019
    

Formula

T(n, k) = (k+1)*A048993(n+1, k+1), with A048993 = Stirling2, for n >= k >= 0, and 0 otherwise.
T(n, k) = (n+1)*(Narumi[a=-1])^(-1)(n, k), with the Narumi[a=-1] matrix with entries (-1)^(n-k)*A028421(n, k)/(n+1).
E.g.f. for column k sequence: E(k, x) = (x*d/dx + 1)*EN(k, x), where EN(k, x) = (exp(x) - 1)^(k+1)/(x*k!) is the e.g.f. for the (Narumi[a=-1])^(-1) columns. Hence E(k, x) = exp(x)*(exp(x) - 1)*(k+1)/k!, for k >= 0.
E.g.f. for (ordinary) row polynomials R(n, x): Epol(z, x) = exp(z)*exp(x*(exp(z) - 1))*(1 + x*(exp(z) - 1)).
Recurrence (from Stirling2): T(n, k) = 0 for n < k; T(n, 0) = (k + 1)*T(n-1, k), for n <= 1, T(0, 0) = 1; T(n, k) = (k+1)*(T(n-1, k) + T(n-1, k-1)/k), for n >= 1, k >= 1.
Recurrence (from a- and z-sequence, see above): a = {1, 1/2, -1/6, 1/4, -19/30, 9/4, ...}, z = {1/2, -1/12, 1/12, -19/120, 9/20, -863/504, ...}.
T(n, k) = 0, for n < k; T(n, 0) = (n+1)*Sum_{j=0..n-1} z(j)*T(n-1, j), for n >= 1, with T(0, 0) = 1; T(n, k) = ((n+1)/k)*Sum_{j=0..n-m} binomial(k-1+j, j)*a(j)*T(n-1, k-1+j).
Recurrence for column k, from the Boas-Buck-type sequence BB(n) = (-1)^(n+1)*A060054(n+1)/A227830(n+1), for n >= 0; BB = {1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, ...}: T(n, k) = 0, for n < k; T(n, n) = n+1, for n >= 0; T(n, k) = ((n+1)!*(k+1)/(n-k))*Sum_{j=k..n-1} (1/(j+1)!)*BB(n-(j+1))*T(j, k), for n >= 0 and k = 0, 1, ..., n-1.
T(n, k) = Stirling2(n+2, k+1) - Stirling2(n+1, k). - Peter Luschny, May 26 2020

A074246 Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.

Original entry on oeis.org

1, 3, 2, 11, 12, 3, 50, 70, 30, 4, 274, 450, 255, 60, 5, 1764, 3248, 2205, 700, 105, 6, 13068, 26264, 20307, 7840, 1610, 168, 7, 109584, 236248, 201852, 89796, 22680, 3276, 252, 8, 1026576, 2345400, 2171040, 1077300, 316365, 56700, 6090, 360, 9
Offset: 1

Views

Author

Paul D. Hanna, Sep 19 2002

Keywords

Comments

The n-th row polynomial, P(n,x), has ordered zeros {z_k < z_(k+1), 0
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the asymptotic expansion of E(x,m=2,n) can be found in A028421. We determined with the latter that E(x,m=2,n+1) = (exp(-x)/x^2)*(1 - (3+2*n)/x + (11+12*n+3*n^2)/x^2 - (50+70*n+30*n^2+ 4*n^3)/x^3 + .... ). The polynomial coefficients in the numerators lead to the coefficients of the triangle given above. The numerators of the o.g.f.s of the right hand columns of this triangle lead for z = 1 to A001147. - Johannes W. Meijer, Oct 16 2009

Examples

			Polynomials begin:
P(1,x) = 1,
P(2,x) = 3 + 2x,
P(3,x) = 11 + 12x + 3x^2,
P(4,x) = 50 + 70x + 30x^2 + 4x^3,
P(5,x) = 274 + 450x + 255x^2 + 60x^3 + 5x^4,
P(6,x) = 1764 + 3248x + 2205x^2 + 700x^3 + 105x^4 + 6x^5,
P(7,x) = 13068 + 26264x + 20307x^2 + 7840x^3 + 1610x^4 + 168x^5 + 7x^6,
P(8,x) = 109584 + 236248x + 201852x^2 + 89796x^3 + 22680x^4 + 3276x^5 + 252x^6 + 8x^7,
P(9,x) = 1026576 + 2345400x + 2171040x^2 + 1077300x^3 + 316365x^4 + 56700x^5 + 6090x^6 + 360x^7 + 9x^8,
P(10,x) = 10628640 + 25507152x + 25228500x^2 + 13667720x^3 + 4510275x^4 + 946638x^5 + 127050x^6 + 10560x^7 + 495x^8 + 10x^9, ...
		

Crossrefs

See references and formulas at A000254, A001705. Cf. A028421.
A027480 is the second right hand column. - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat): A074246 := proc(n,m): (-1)^(n+m)*binomial(m,1)*stirling1(n+1,m+1) end: seq(seq(A074246(n,m),m=1..n),n=1..9); # Johannes W. Meijer, Oct 16 2009, Revised Sep 09 2012
  • Mathematica
    p[n_, x_] := Sum[1/(k+x), {k, 1, n}] Product[k+x, {k, 1, n}] ; Flatten[Table[ CoefficientList[ p[n, x] // Simplify[#, ComplexityFunction -> Length] &, x], {n, 1, 9}]] (* Jean-François Alcover, May 04 2011 *)
  • PARI
    P(n) = Vecrev(sum(k=1, n, prod(k=1, n, (k+x))/(k+x)));
    for (n=1, 10, print(P(n))) \\ Michel Marcus, Jan 22 2017

Formula

First column is A000254 (Stirling numbers of first kind s(n, 2): a(n+1)=(n+1)*a(n)+n!), while sum of rows is A001705 (generalized Stirling numbers). Also related to Harmonic numbers: P(n, 0)=n!*H(n), H(n)=harmonic number.
T(n,k) = (-1)^(n+k)*k*Stirling1(n+1,k+1). - Johannes W. Meijer, Oct 16 2009
E.g.f.: 1/(1 - z)^(x+1)*log(1/(1 - z)). Cf. A028421. - Peter Bala, Jan 06 2015
Previous Showing 21-30 of 30 results.