A076481
Primes of the form (3^n-1)/2.
Original entry on oeis.org
13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013
Offset: 1
-
[a: n in [1..200] | IsPrime(a) where a is (3^n-1) div 2 ]; // Vincenzo Librandi, Dec 09 2011
-
A076481:=n->`if`(isprime((3^n-1)/2), (3^n-1)/2, NULL): seq(A076481(n), n=1..100); # Wesley Ivan Hurt, Sep 30 2014
-
Select[Table[(3^n-1)/2, {n,0,500}], PrimeQ] (* Vincenzo Librandi, Dec 09 2011 *)
-
for(n=3,99,if(ispseudoprime(t=3^n\2),print1(t", "))) \\ Charles R Greathouse IV, Jul 02 2013
A004063
Numbers k such that (7^k - 1)/6 is prime.
Original entry on oeis.org
5, 13, 131, 149, 1699, 14221, 35201, 126037, 371669, 1264699
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paul Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
-
For[n = 1, n <= 20000, n++, If[PrimeQ[(7^n - 1)/6 ], Print[n]]] (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 09 2006 *)
-
is(n)=isprime((7^n - 1)/6) \\ Charles R Greathouse IV, Apr 28 2015
-
PRP=1,7,1264699,-1,0,0,"6"
a(8) discovered Sep 17 2008 by Paul Bourdelais & Eric Purohit - it is a probable prime based on trial factoring to 2.5*10^13 and Fermat base 2 primality test. -
Paul Bourdelais, Sep 18 2008
A005808
Numbers k such that (11^k - 1)/10 is prime.
Original entry on oeis.org
17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, 20161, 293831, 1868983
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- Henri & Renaud Lifchitz, PRP Records.
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit.
- Index to primes in various ranges, form ((k+1)^n-1)/k
a(11) = 20161 was found by Kamil Duszenko on Aug 15 2003. -
Alexander Adamchuk, Feb 11 2007
a(12) = 293831 corresponds to a probable prime discovered by
Paul Bourdelais with PFGW v3.3.1, Mar 08 2010
A004062
Numbers k such that (6^k - 1)/5 is prime.
Original entry on oeis.org
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, 1365019, 3360347
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers]
- Paul Bourdelais, A Generalized Repunit Conjecture. - _Paul Bourdelais_, May 24 2010
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
- Index to primes in various ranges, form ((k+1)^n-1)/k
More terms from Kamil Duszenko (kdusz(AT)wp.pl), Jun 22 2003
a(14) discovered Nov 05 2007, corresponds to a probable prime based on trial factoring to 10^11 and Fermat primality test base 2. -
Paul Bourdelais
a(15) corresponds to a probable prime discovered by
Paul Bourdelais, May 24 2010
a(16) corresponds to a probable prime discovered by
Paul Bourdelais, Dec 31 2019
a(17) corresponds to a probable prime discovered by
Ryan Propper, Oct 30 2023
A004064
Numbers k such that (12^k - 1)/11 is prime.
Original entry on oeis.org
2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, 14951, 37573, 46889, 769543
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 109, p. 38, Ellipses, Paris 2008.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(13)=46889, discovered Sep 10 2008 by Paul Bourdelais, corresponds to a probable prime based on trial factoring to 10^13 and Fermat base 2 primality test. -
Paul Bourdelais, Sep 11 2008
a(14)=769543 corresponds to a probable prime discovered by
Paul Bourdelais, Dec 05 2014
A016054
Numbers n such that (13^n - 1)/12 is prime.
Original entry on oeis.org
5, 7, 137, 283, 883, 991, 1021, 1193, 3671, 18743, 31751, 101089, 1503503
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
a(11) from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(12) corresponds to a probable prime discovered by
Paul Bourdelais, Mar 01 2010
a(13) corresponds to a probable prime discovered by
Paul Bourdelais, Apr 09 2020
A006033
Numbers n such that (15^n - 1)/14 is prime.
Original entry on oeis.org
3, 43, 73, 487, 2579, 8741, 37441, 89009, 505117, 639833
Offset: 1
(15^3 - 1)/14 = 241, which is prime.
- Paulo Ribenboim, "The Book Of Prime Number Records"; published 1989 by Springer-Verlag; pages 350-354.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Bourdelais, A Generalized Repunit Conjecture
- Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- Henri Lifchitz, Mersenne and Fermat primes field
- Index to primes in various ranges, form ((k+1)^n-1)/k
a(7) from Julien Peter Benney (jpbenney(AT)ftml.net), Apr 27 2007
a(8) corresponds to a probable prime discovered by
Paul Bourdelais, Mar 15 2010
a(9) corresponds to a probable prime discovered by
Paul Bourdelais, Jan 14 2015
a(10) corresponds to a probable prime discovered by
Paul Bourdelais, Apr 22 2019
A006032
Numbers k such that (14^k - 1)/13 is prime.
Original entry on oeis.org
3, 7, 19, 31, 41, 2687, 19697, 59693, 67421, 441697
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paul Bourdelais, A Generalized Repunit Conjecture
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(8) and a(9) correspond to probable primes discovered by
Paul Bourdelais, Mar 01 2010
a(10) corresponds to a probable prime discovered by
Paul Bourdelais, Dec 08 2014
A006034
Numbers n such that (17^n-1)/16 is prime.
Original entry on oeis.org
3, 5, 7, 11, 47, 71, 419, 4799, 35149, 54919, 74509, 1990523
Offset: 1
- Ribenboim, Paulo; "The Book Of Prime Number Records"; published 1989 by Springer-Verlag; pages 350-354.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
a(9)=35149 & a(10)=54919 are probable primes discovered by
Paul Bourdelais, Mar 08 2010
a(12)=1990523 corresponds to a probable prime discovered by
Paul Bourdelais, Aug 03 2020
A006035
Numbers n such that (19^n-1)/18 is prime.
Original entry on oeis.org
19, 31, 47, 59, 61, 107, 337, 1061, 9511, 22051, 209359
Offset: 1
- Ribenboim, Paulo; "The Book Of Prime Number Records"; published 1989 by Springer-Verlag; pages 350-354.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paul Bourdelais, A Generalized Repunit Conjecture. - _Paul Bourdelais_, Aug 27 2010
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- Index to primes in various ranges, form ((k+1)^n-1)/k
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(11)=209359 corresponds to a probable prime discovered by
Paul Bourdelais, Aug 27 2010
Comments