cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A130609 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.

Original entry on oeis.org

0, 32, 533, 669, 833, 3672, 4460, 5412, 21945, 26537, 32085, 128444, 155208, 187544, 749165, 905157, 1093625, 4366992, 5276180, 6374652, 25453233, 30752369, 37154733, 148352852, 179238480, 216554192, 864664325, 1044678957, 1262170865, 5039633544, 6088835708
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+223, y).
Corresponding values y of solutions (x, y) are in A159809.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 0.

Crossrefs

Cf. A159809, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159810 (decimal expansion of (227+30*sqrt(2))/223), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,32,533,669,833,3672,4460}, 70]  (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+446*n+49729), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+446 for n > 6; a(1)=0, a(2)=32, a(3)=533, a(4)=669, a(5)=833, a(6)=3672.
G.f.: x*(32+501*x+136*x^2-28*x^3-167*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 223*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A130610 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+359)^2 = y^2.

Original entry on oeis.org

0, 40, 901, 1077, 1281, 6160, 7180, 8364, 36777, 42721, 49621, 215220, 249864, 290080, 1255261, 1457181, 1691577, 7317064, 8493940, 9860100, 42647841, 49507177, 57469741, 248570700, 288549840, 334959064, 1448777077, 1681792581
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+359, y).
Corresponding values y of solutions (x, y) are in A159844.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (363+38*sqrt(2))/359 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (293619+186550*sqrt(2))/359^2 for n mod 3 = 0.

Crossrefs

Cf. A159844, A028871, A118337, A130609, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159845 (decimal expansion of (363+38*sqrt(2))/359), A159846 (decimal expansion of (293619+186550*sqrt(2))/359^2).

Programs

  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+718*n+128881), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+718 for n > 6; a(1)=0, a(2)=40, a(3)=901, a(4)=1077, a(5)=1281, a(6)=6160.
G.f.: x*(40+861*x+176*x^2-36*x^3-287*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 359*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A130645 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+439)^2 = y^2.

Original entry on oeis.org

0, 44, 1121, 1317, 1541, 7644, 8780, 10080, 45621, 52241, 59817, 266960, 305544, 349700, 1557017, 1781901, 2039261, 9076020, 10386740, 11886744, 52899981, 60539417, 69282081, 308324744, 352850640, 403806620, 1797049361, 2056565301, 2353558517, 10473972300
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+439, y).
Corresponding values y of solutions (x, y) are in A159890.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (443+42*sqrt(2))/439 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (450483+287918*sqrt(2))/439^2 for n mod 3 = 0.

Crossrefs

Cf. A159890, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159891 (decimal expansion of (443+42*sqrt(2))/439), A159892 (decimal expansion of (450483+287918*sqrt(2))/439^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 44, 1121, 1317, 1541, 7644, 8780}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+878*n+192721), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+878 for n > 6; a(1)=0, a(2)=44, a(3)=1121, a(4)=1317, a(5)=1541, a(6)=7644.
G.f.: x*(44+1077*x+196*x^2-40*x^3-359*x^4-40*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 439*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A130646 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+727)^2 = y^2.

Original entry on oeis.org

0, 56, 1925, 2181, 2465, 13056, 14540, 16188, 77865, 86513, 96117, 455588, 505992, 561968, 2657117, 2950893, 3277145, 15488568, 17200820, 19102356, 90275745, 100255481, 111338445, 526167356, 584333520, 648929768, 3066729845
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+727, y).
Corresponding values y of solutions (x, y) are in A159893.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 0.

Crossrefs

Cf. A159893, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727), A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,56,1925,2181,2465,13056,14540},40] (* or *) RecurrenceTable[{a[1]==0,a[2]==56,a[3]==1925,a[4]==2181,a[5] == 2465, a[6] == 13056, a[n] ==6a[n-3]-a[n-6]+1454},a,{n,40}] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1454*n+528529), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1454 for n > 6; a(1)=0, a(2)=56, a(3)=1925, a(4)=2181, a(5)=2465, a(6)=13056.
G.f.: x*(56+1869*x+256*x^2-52*x^3-623*x^4-52*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 727*A001652(k) for k >= 0.

Extensions

Edited and one term added by Klaus Brockhaus, Apr 30 2009

A130647 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.

Original entry on oeis.org

0, 60, 2241, 2517, 2821, 15180, 16780, 18544, 90517, 99841, 110121, 529600, 583944, 643860, 3088761, 3405501, 3754717, 18004644, 19850740, 21886120, 104940781, 115700617, 127563681, 611641720, 674354640, 743497644, 3564911217
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+839, y).
Corresponding values y of solutions (x, y) are in A159896.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 0.

Crossrefs

Cf. A159896, A028871, A118337, A130645, A130646, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).

Programs

  • Magma
    I:=[0,60,2241,2517,2821,15180,16780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n=7): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,60,2241,2517,2821,15180,16780},30] (* Harvey P. Dale, Jun 19 2014 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1678*n+703921), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) +1678 for n > 6; a(1)=0, a(2)=60, a(3)=2241, a(4)=2517, a(5)=2821, a(6)=15180.
G.f.: x*(60+2181*x+276*x^2-56*x^3-727*x^4-56*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 839*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A240587 Primes p of the form n^2 + 123456789 where 123456789 is the first zeroless pandigital number.

Original entry on oeis.org

123457189, 123459289, 123465253, 123466789, 123470713, 123481753, 123482389, 123486373, 123489913, 123501733, 123505189, 123510613, 123535189, 123545593, 123564373, 123571033, 123584953, 123587833, 123592213, 123610453, 123631513, 123641689, 123657493
Offset: 1

Views

Author

K. D. Bajpai, Apr 08 2014

Keywords

Examples

			123457189 is a prime and appears in the sequence because 123457189 = 20^2 + 123456789.
123459289 is a prime and appears in the sequence because 123459289 = 50^2 + 123456789.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a; a:=n^2+123456789; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Table[k^2+123456789,{k,1,3000}],PrimeQ]

A028874 Primes of form k^2 - 3.

Original entry on oeis.org

13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1

Views

Author

Keywords

Comments

Also primes equal to the product of two consecutive odd numbers (A000466) minus 2. - Giovanni Teofilatto, Feb 11 2010
All terms are of the form 6m + 1. - Zak Seidov, May 01 2014

Examples

			61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
		

Crossrefs

Cf. A002476 (Primes of form 6m + 1), A028871, A028872, A028873.
Primes terms in A082109. Subsequence of A068228. - Klaus Purath, Jan 09 2023

Programs

Formula

A028872 INTERSECT A000040. - Klaus Purath, Dec 07 2020
a(n) = A028873(n)^2 - 3. - Amiram Eldar, Mar 01 2025

A130608 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+167)^2 = y^2.

Original entry on oeis.org

0, 28, 385, 501, 645, 2668, 3340, 4176, 15957, 19873, 24745, 93408, 116232, 144628, 544825, 677853, 843357, 3175876, 3951220, 4915848, 18510765, 23029801, 28652065, 107889048, 134227920, 166996876, 628823857, 782338053, 973329525, 3665054428, 4559800732
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+167, y).
Corresponding values y of solutions (x, y) are in A159777.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (171+26*sqrt(2))/167 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (56211+34510*sqrt(2))/167^2 for n mod 3 = 0.

Crossrefs

Cf. A159777, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159778 (decimal expansion of (171+26*sqrt(2))/167), A159779 (decimal expansion of (56211+34510*sqrt(2))/167^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,28,385,501,645,2668,3340},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+334*n+27889), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+334 for n > 6; a(1)=0, a(2)=28, a(3)=385, a(4)=501, a(5)=645, a(6)=2668.
G.f.: x*(28+357*x+116*x^2-24*x^3-119*x^4-24*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 167*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A189827 a(n) = d(n-1) + d(n+1), where d(k) is the number of divisors of k.

Original entry on oeis.org

3, 5, 4, 7, 4, 8, 5, 8, 5, 10, 4, 10, 6, 9, 6, 11, 4, 12, 6, 10, 6, 12, 5, 12, 7, 10, 6, 14, 4, 14, 6, 10, 8, 13, 6, 13, 6, 12, 6, 16, 4, 14, 8, 10, 8, 14, 5, 16, 7, 12, 6, 14, 6, 16, 8, 12, 6, 16, 4, 16, 8, 11, 10, 15, 6, 14, 6, 14, 6, 20, 4, 16, 8, 10, 10
Offset: 2

Views

Author

T. D. Noe, Apr 28 2011

Keywords

Comments

d(n-1) + d(n+1) is a measure of the compositeness of the numbers next to n. Sequence A189825 lists the first occurrence of each number.
It is conjectured that every number greater than 3 occurs an infinite number of times. Note that an infinite number of 4's is equivalent to there being an infinite number of twin primes (A001097). An infinite number of 5's is equivalent to there being an infinite number of primes of the form p^2-2 (A028871) or p^2+2 (A056899) for prime p. An infinite number of 6's is equivalent to there being an infinite number of primes of the form p^3-2 (A066878), p^3+2 (A048636), p*q-2 (A063637), or p*q+2 (A063638), where p and q are distinct primes.

Examples

			a(5) = d(4) + d(6) = 3 + 4 = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n-1] + DivisorSigma[0,n+1], {n, 2, 100}]
    First[#]+Last[#]&/@Partition[DivisorSigma[0,Range[80]],3,1] (* Harvey P. Dale, May 27 2013 *)

A234812 Primes p of the form n + 987654321 where 987654321 is the largest zeroless pandigital number.

Original entry on oeis.org

987654323, 987654337, 987654347, 987654359, 987654361, 987654377, 987654379, 987654383, 987654419, 987654439, 987654443, 987654461, 987654463, 987654467, 987654511, 987654539, 987654581, 987654583, 987654601, 987654607, 987654611, 987654673, 987654677, 987654791
Offset: 1

Views

Author

K. D. Bajpai, Apr 19 2014

Keywords

Examples

			987654323 is a prime and appears in the sequence because 987654323 = 2 + 987654321.
987654337 is a prime and appears in the sequence because 987654337 = 16 + 987654321.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a; a:=n+987654321; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Table[k + 987654321, {k,1,1000}], PrimeQ]
    c=0; a=n+987654321; Do[If[PrimeQ[a], c=c+1; Print[c," ",a]], {n,0,200000}] (* b-file *)
Previous Showing 11-20 of 46 results. Next