A106435
a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=3.
Original entry on oeis.org
0, 3, 9, 36, 135, 513, 1944, 7371, 27945, 105948, 401679, 1522881, 5773680, 21889683, 82990089, 314639316, 1192888215, 4522582593, 17146412424, 65006985051, 246460192425, 934401532428, 3542585174559, 13430960120961
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,3).
-
a106435 n = a106435_list !! n
a106435_list = 0 : 3 : map (* 3) (zipWith (+) a106435_list (tail
a106435_list))
-- Reinhard Zumkeller, Oct 15 2011
-
a:=[0,3]; [n le 2 select a[n] else 3*Self(n-1) + 3*Self(n-2) : n in [1..24]]; // Marius A. Burtea, Jan 21 2020
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!(3*x/(1-3*x-3*x^2))); // Marius A. Burtea, Jan 21 2020
-
seq(coeff(series(3*x/(1-3*x-3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Mar 12 2020
-
LinearRecurrence[{3,3}, {0,3}, 30] (* G. C. Greubel, Mar 12 2020 *)
-
a(n)=([0,3;1,3]^n)[1,2]
-
[3^((n+1)/2)*i^(1-n)*chebyshev_U(n-1, i*sqrt(3)/2) for n in (0..30)] # G. C. Greubel, Mar 12 2020
A180226
a(n) = 4*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 4, 26, 144, 836, 4784, 27496, 157824, 906256, 5203264, 29875616, 171535104, 984896576, 5654937344, 32468715136, 186424233984, 1070384087296, 6145778689024, 35286955629056, 202605609406464, 1163291993916416, 6679224069730304, 38349816218085376
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015443,
A015447,
A030195,
A053404,
A057087,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222.
-
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=4*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{4,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
x='x+O('x^30); concat([0], Vec(x^2/(1-4*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
A368518
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 3*x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 7, 3, 10, 18, 20, 5, 20, 51, 68, 61, 8, 40, 118, 220, 251, 182, 13, 76, 264, 584, 905, 888, 547, 21, 142, 558, 1452, 2678, 3540, 3076, 1640, 34, 260, 1145, 3380, 7279, 11536, 13418, 10456, 4921, 55, 470, 2286, 7548, 18391, 33990, 47600, 49552
Offset: 1
First eight rows:
1
1 2
2 4 7
3 10 18 20
5 20 51 68 61
8 40 118 220 251 182
13 76 264 584 905 888 547
21 142 558 1452 2678 3540 3076 1640
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 18*x^2 + 20*x^3, so (T(4,k)) = (3,10,18,20), k=0..3.
Cf.
A000045 (column 1);
A002605, (p(n,n-1));
A030195 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A015545, (p(n,2));
A099012, (p(n,-2));
A087567, (p(n,3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368155,
A368156.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 3x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A057093
Scaled Chebyshev U-polynomials evaluated at i*sqrt(10)/2. Generalized Fibonacci sequence.
Original entry on oeis.org
1, 10, 110, 1200, 13100, 143000, 1561000, 17040000, 186010000, 2030500000, 22165100000, 241956000000, 2641211000000, 28831670000000, 314728810000000, 3435604800000000, 37503336100000000, 409389409000000000, 4468927451000000000, 48783168600000000000
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..963
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=10.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=10.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (10,10).
-
Join[{a=0,b=1},Table[c=10*b+10*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
LinearRecurrence[{10,10},{1,10},30] (* Harvey P. Dale, Jan 18 2025 *)
-
Vec(1/(1-10*x-10*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
-
[lucas_number1(n,10,-10) for n in range(1, 19)] # Zerinvary Lajos, Apr 26 2009
A083337
a(n) = 2*a(n-1) + 2*a(n-2); a(0)=0, a(1)=3.
Original entry on oeis.org
0, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 20064, 54816, 149760, 409152, 1117824, 3053952, 8343552, 22795008, 62277120, 170144256, 464842752, 1269974016, 3469633536, 9479215104, 25897697280, 70753824768, 193303044096, 528113737728, 1442833563648, 3941894602752, 10769456332800
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,2).
-
a083337 n = a083337_list !! n
a083337_list =
0 : 3 : map (* 2) (zipWith (+) a083337_list (tail a083337_list))
-- Reinhard Zumkeller, Oct 15 2011
-
CoefficientList[Series[3x/(1-2x-2x^2), {x, 0, 25}], x]
s = Sqrt[3]; a[n_] := Simplify[s*((1 + s)^n - (1 - s)^n)/2]; Array[a, 30, 0] (* or *)
LinearRecurrence[{2, 2}, {0, 3}, 31] (* Robert G. Wilson v, Aug 07 2018 *)
-
apply( a(n)=([1,1;3,1]^n)[2,1], [0..30]) \\ or: ([2,2;1,0]^n)[2,1]*3. - M. F. Hasler, Aug 06 2018
Edited and definition completed by
M. F. Hasler, Aug 06 2018
A108898
a(n+3) = 3*a(n+2) - 2*a(n), a(0) = -1, a(1) = 1, a(2) = 3.
Original entry on oeis.org
-1, 1, 3, 11, 31, 87, 239, 655, 1791, 4895, 13375, 36543, 99839, 272767, 745215, 2035967, 5562367, 15196671, 41518079, 113429503, 309895167, 846649343, 2313089023, 6319476735, 17265131519, 47169216511, 128868696063, 352075825151, 961889042431, 2627929735167, 7179637555199
Offset: 0
-
a108898 n = a108898_list !! n
a108898_list = -1 : 1 : 3 :
zipWith (-) (map (* 3) $ drop 2 a108898_list) (map (* 2) a108898_list)
-- Reinhard Zumkeller, Oct 15 2011
-
seriestolist(series((-1+4*x)/((x-1)*(2*x^2+2*x-1)), x=0,31)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibaseksumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i + .5'j - .5'k + .5i' - .5j' + .5k' + .5'ij' + .5'ik' - .5'ji' - .5'ki'; Sumtype is set to:sum[(Y[0], Y[1], Y[2]),mod(3)
-
LinearRecurrence[{3, 0, -2}, {-1, 1, 3}, 40] (* Paolo Xausa, Aug 21 2024 *)
-
Vec(-(1 - 4*x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Apr 29 2019
A135030
Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).
Original entry on oeis.org
0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A180250.
-
[n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
-
A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
-
Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A129267
Triangle with T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k) and T(0,0)=1 .
Original entry on oeis.org
1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -1, -3, -2, 1, 1, 0, -2, -5, -3, 1, 1, 1, 2, -2, -7, -4, 1, 1, 1, 5, 7, -1, -9, -5, 1, 1, 0, 3, 12, 15, 1, -11, -6, 1, 1, -1, -3, 3, 21, 26, 4, -13, -7, 1, 1, -1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 1, 1;
-1, -1, 1, 1;
-1, -3, -2, 1, 1;
0, -2, -5, -3, 1, 1;
1, 2, -2, -7, -4, 1, 1;
1, 5, 7, -1, -9, -5, 1, 1;
0, 3, 12, 15, 1, -11, -6, 1, 1;
-1, -3, 3, 21, 26, 4, -13, -7, 1, 1;
-1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1;
-
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif n=0 and k=0 then 1
else T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2020
-
m = {{a, 1}, {-1, 1}}; v[0]:= {0, 1}; v[n_]:= v[n] = m.v[n-1]; Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 15 2009 *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0 && k==0, 1, T[n-1, k-1] + T[n-1, k] - T[n-2, k-1] - T[n-2, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2020 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (n==0 and k==0): return 1
else: return T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 14 2020
Riordan array definition corrected by
Ralf Stephan, Jan 02 2014
A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
A180250= BinaryRecurrenceSequence(5,10,0,1)
[A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Comments