A110447
Number of permutations containing 3241 patterns only as part of 35241 patterns.
Original entry on oeis.org
1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0
- David Callan, A combinatorial interpretation of the eigensequence for composition, arXiv:math/0507169 [math.CO], 2005.
- David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
- David Callan, A Wilf equivalence related to two stack sortable permutations, arXiv:math/0510211 [math.CO], 2005.
- David Callan, Lagrange Inversion Counts 3bar-5241-Avoiding Permutations, J. Int. Seq. 14 (2011) # 11.9.4
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
This sequence is
A030266 shifted left.
-
A:= proc(n) option remember; unapply(`if`(n=0, x,
A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
end:
a:= n-> coeff(A(1+n)(x), x, 1+n):
seq(a(n), n=0..23); # Alois P. Heinz, Jul 10 2023
-
(* The following recurrence for a(n) is derived in the first linked paper *)
a[0]=c[1]=1
a[n_]/;n>=1 := a[n] = Sum[a[i]c[n-i], {i, 0, n-1}]
c[n_]/;n>=2 := c[n] = Sum[i a[n-1, i], {i, n-1}]
a[n_, k_]/;1<=k<=n-1 := a[n, k] = Sum[a[i]a[n-1-i, j], {i, 0, k-1}, {j, k-i, n-1-i}]
a[ n_, n_ ]/;n>=1 := a[n, n] = a[n-1]
(* The following Mathematica code generates all the permutations counted by a(n).
Run the code; then Aset[n] returns the permutations counted by a(n). *)
Aset[0] = { { } }
Aset[1] = { {1} }
Cset[1] = { {1} }
Aset[n_, n_ ]/;n>=1 := Aset[n, n ] = Map[Join[{n}, # ]&, Aset[n-1 ] ]
processBn[n_, single_, i_] := Module[{base=Drop[Range[n], {i}]}, Join[{i}, base[[single]] ] ]
Cset[n_]/;n>=2 := Cset[n] = Flatten[Table[Map[processBn[n, #, i]&, Aset[n-1, j-1]], {j, 2, n}, {i, j-1}], 2]
processAn[pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]]}, Flatten[Insert[j+p2, p1, 2] ] ]
Aset[ n_ ]/;n>=2 := Aset[ n ] = Flatten[ Table[ Map[ processAn[ #, j ]&, CartesianProduct[ Aset[ j ], Cset[ n-j ] ] ], {j, 0, n-1} ], 1 ]
processAnk[n_, k_, pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]], base}, base=Complement[Range[j+1, n], {k}]; Join[{k}, p1, base[[p2]]] ]
Aset[ n_, k_ ]/;1<=k<=n-1 := Aset[ n, k ] = Flatten[ Table[ Map[ processAnk[ n, k, #, j ]&, CartesianProduct[ Aset[ j ], Aset[ n-1-j, r ] ] ], {j, 0, k-1}, {r, k-j, n-1-j} ], 2 ]
A379598
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A110447.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 6, 0, 1, 4, 9, 16, 23, 0, 1, 5, 14, 31, 62, 104, 0, 1, 6, 20, 52, 123, 278, 531, 0, 1, 7, 27, 80, 213, 552, 1398, 2982, 0, 1, 8, 35, 116, 340, 964, 2750, 7718, 18109, 0, 1, 9, 44, 161, 513, 1561, 4784, 14976, 46083, 117545, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 6, 16, 31, 52, 80, 116, ...
0, 23, 62, 123, 213, 340, 513, ...
0, 104, 278, 552, 964, 1561, 2400, ...
0, 531, 1398, 2750, 4784, 7755, 11987, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+k, j)/(n+k)*a(n-j, j)));
A001028
E.g.f. satisfies A'(x) = 1 + A(A(x)), A(0)=0.
Original entry on oeis.org
1, 1, 2, 7, 37, 269, 2535, 29738, 421790, 7076459, 138061343, 3089950076, 78454715107, 2238947459974, 71253947372202, 2511742808382105, 97495087989736907, 4145502184671892500, 192200099033324115855, 9676409879981926733908, 527029533717566423156698
Offset: 1
- This functional equation (for f(x)=1+A(x-1)) was the subject of problem B5 of the 2010 Putnam exam.
-
A:= proc(n) option remember; local T; if n=0 then 0 else T:= A(n-1); unapply(convert(series(Int(1+T(T(x)), x), x, n+1), polynom), x) fi end: a:= n-> coeff(A(n)(x), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 23 2008
-
terms = 21; A[] = 0; Do[A[x] = x + Integrate[A[A[x]], x] + O[x]^(n+1) // Normal, {n, terms}];
Rest[CoefficientList[A[x], x]]*Range[terms]! (* Jean-François Alcover, Dec 07 2011, updated Jan 10 2018 *)
-
Co(n,k,a):= if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1,a), i,0,n-k); a(n):= if n=1 then 1 else (1/n)*sum(Co(n-1,k,a)*a(k),k,1,n-1); makelist(n!*a(n),n,1,7); /* Vladimir Kruchinin, Jun 30 2011 */
-
{a(n) = my(A=x); for(i=1,n, A = serreverse(intformal(1/(1+A) +x*O(x^n)))); n!*polcoeff(A,n)}
for(n=1,25,print1(a(n),", ")) \\ Paul D. Hanna, Jun 27 2015
A120970
G.f. A(x) satisfies A(x/A(x)^2) = 1 + x ; thus A(x) = 1 + Series_Reversion(x/A(x)^2).
Original entry on oeis.org
1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, 1711459903, 26228829200, 420370445830, 7021029571856, 121859518887327, 2192820745899978, 40831103986939664, 785429260324068156, 15585831041632684997, 318649154587152781210, 6704504768568697046504
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 142*x^4 + 1164*x^5 + 11221*x^6 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 + ...
A(A(x)-1)^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 504*x^4 + 4946*x^5 + ...
x/A(x)^2 = x - 2*x^2 - x^3 - 10*x^4 - 73*x^5 - 662*x^6 - 6842*x^7 - ...
Series_Reversion(x/A(x)^2) = x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n)/(2*n),
form a table of coefficients in A(x)^(2*n) as follows:
A^2: [(1), 2, 5, 22, 142, 1164, 11221, 121848, ...];
A^4: [ 1, (4), 14, 64, 397, 3116, 29002, 306468, ...];
A^6: [ 1, 6, (27), 134, 825, 6270, 56492, 580902, ...];
A^8: [ 1, 8, 44, (240), 1502, 11200, 98144, 983016, ...];
A^10: [ 1, 10, 65, 390, (2520), 18672, 160115, 1565260, ...];
A^12: [ 1, 12, 90, 592, 3987, (29676), 250730, 2399388, ...];
A^14: [ 1, 14, 119, 854, 6027, 45458, (381010), 3582266, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/4*(4), 2/6*(27), 2/8*(240), 2/10*(2520), 2/12*(29676), ...].
-
terms = 21; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^2 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^2))[ #A]);A[n+1]}
for(n=0,30,print1(a(n),", "))
-
/* This sequence is generated when k=2, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n,k=2,m=0)=local(A=sum(i=0,n-1,a(i,k,m)*x^i));if(n==0,1,polcoeff((m+k)/(m+k*n)*A^(m+k*n),n-1))} \\ Paul D. Hanna, Nov 16 2008
for(n=0,30,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*b(n-j, 2*j)));
a(n) = if(n==0, 1, b(n-1, 2)); \\ Seiichi Manyama, Jun 04 2025
A120972
G.f. A(x) satisfies A(x/A(x)^3) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^3).
Original entry on oeis.org
1, 1, 3, 21, 217, 2814, 42510, 718647, 13270944, 263532276, 5567092665, 124143735663, 2905528740060, 71058906460091, 1809695198254281, 47861102278428198, 1311488806252697283, 37164457324943708739, 1087356593493807164289, 32801308084353988297404
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 813*x^4 + 10212*x^5 + 150699*x^6 +...
A(A(x)-1) = 1 + x + 6*x^2 + 60*x^3 + 776*x^4 + 11802*x^5 + 201465*x^6 +...
A(A(x)-1)^3 = 1 + 3*x + 21*x^2 + 217*x^3 + 2814*x^4 + 42510*x^5 +...
x/A(x)^3 = x - 3*x^2 - 3*x^3 - 37*x^4 - 420*x^5 - 5823*x^6 -...
Series_Reversion(x/A(x)^3) = x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(3*n)/(3*n),
form a table of coefficients in A(x)^(3*n) as follows:
A^3: [(1), 3, 12, 82, 813, 10212, 150699, 2503233, ...];
A^6: [ 1, (6), 33, 236, 2262, 27270, 388906, 6289080, ...];
A^9: [ 1, 9, (63), 489, 4671, 54684, 756012, 11904813, ...];
A^12: [ 1, 12, 102, (868), 8445, 97260, 1310040, 20112516, ...];
A^15: [ 1, 15, 150, 1400, (14070), 161343, 2130505, 31961175, ...];
A^18: [ 1, 18, 207, 2112, 22113, (255060), 3324003, 48876264, ...];
A^21: [ 1, 21, 273, 3031, 33222, 388563, (5030529), 72769014, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[3/3*(1), 3/6*(6), 3/9*(63), 3/12*(868), 3/15*(14070), 3/18*(255060), ...].
-
terms = 18; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^3 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^3))[ #A]);A[n+1]}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*subst(A^3,x,A-1+x*O(x^n)));polcoeff(A,n)}
-
/* This sequence is generated when k=3, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */
{a(n, k=3, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
for(n=0,25,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*b(n-j, 3*j)));
a(n) = if(n==0, 1, b(n-1, 3)); \\ Seiichi Manyama, Jun 04 2025
A121687
G.f. satisfies A(x) = 1 + x*A(x) * A( x*A(x) )^2.
Original entry on oeis.org
1, 1, 3, 14, 83, 574, 4432, 37244, 335153, 3194510, 32001596, 335019839, 3649450270, 41227610316, 481724831132, 5809341783543, 72177761136925, 922539273876404, 12115001489115910, 163284755614174305
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 14*x^3 + 83*x^4 + 574*x^5 + 4432*x^6 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 203*x^4 + 1398*x^5 + 10706*x^6 +...
A(x*A(x)) = 1 + x + 4*x^2 + 23*x^3 + 160*x^4 + 1259*x^5 + 10833*x^6 +...
A(x*A(x))^2 = 1 + 2*x + 9*x^2 + 54*x^3 + 382*x^4 + 3022*x^5 + 25993*x^6 +...
A(x)*A(x*A(x))^2 = 1 + 3*x + 14*x^2 + 83*x^3 + 574*x^4 + 4432*x^5 +...
The logarithm of the g.f. is given by:
log(A(x)) = A(x)^2*x + {d/dx x*A(x)^4}*x^2/2! + {d^2/dx^2 x^2*A(x)^6}*x^3/3! + {d^3/dx^3 x^3*A(x)^8}*x^4/4! +...
-
{a(n)=local(A=1+x);for(i=0,n,A=serreverse(x/(1+x*(A +x*O(x^n))^2))/x); polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1/(1-x*subst(A^2,x,x*A)));polcoeff(A,n)}
-
{a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010
-
{a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))} \\ Paul D. Hanna, Dec 15 2010
A120974
G.f. A(x) satisfies A(x/A(x)^4) = 1 + x; thus A(x) = 1 + series_reversion(x/A(x)^4).
Original entry on oeis.org
1, 1, 4, 38, 532, 9329, 190312, 4340296, 108043128, 2890318936, 82209697588, 2467155342740, 77676395612884, 2554497746708964, 87449858261161216, 3107829518797739032, 114399270654847628768, 4353537522757357068296, 171010040645759712226048
Offset: 0
-
A:= x -> 1:
for m from 1 to 30 do
Ap:= unapply(A(x)+c*x^m,x);
S:= series(Ap(x/Ap(x)^4)-1-x, x, m+1);
cs:= solve(convert(S,polynom),c);
A:= subs(c=cs, eval(Ap));
od:
seq(coeff(A(x),x,m),m=0..30);# Robert Israel, Oct 25 2019
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/A[x]^4] - 1 - x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^4))[ #A]);A[n+1]}
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*b(n-j, 4*j)));
a(n) = if(n==0, 1, b(n-1, 4)); \\ Seiichi Manyama, Jun 04 2025
Original entry on oeis.org
1, 1, 4, 30, 321, 4389, 72512, 1399755, 30865353, 764755508, 21024535960, 634924059276, 20890221475598, 743727414390456, 28484480606420928, 1167761832049224515, 51022550712426870397, 2366859765773183488674
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,n,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
A182954
G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^4.
Original entry on oeis.org
1, 1, 5, 39, 381, 4284, 53163, 710810, 10085621, 150326044, 2336828792, 37687170215, 628069684439, 10782885724300, 190248852445782, 3442896376032300, 63804661588968521, 1209314277690837796
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 39*x^3 + 381*x^4 + 4284*x^5 + ...
Related expansions:
A(x*A(x)) = 1 + x + 6*x^2 + 54*x^3 + 592*x^4 + 7331*x^5 + 98870*x^6 + ...
A(x*A(x))^4 = 1 + 4*x + 30*x^2 + 292*x^3 + 3305*x^4 + 41420*x^5 + ...
The g.f. satisfies:
log(A(x)) = A(x)^4*x + {d/dx x*A(x)^8}*x^2/2! + {d^2/dx^2 x^2*A(x)^12}*x^3/3! + {d^3/dx^3 x^3*A(x)^16}*x^4/4! + ...
-
{a(n) = my(A = 1 + sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n, A = exp( sum(m=1,n, sum(k=0,n-m, binomial(m+k-1,k)*polcoef(A^(4*m),k)*x^k) * x^m/m ) + x*O(x^n))); polcoef(A,n)}
-
{a(n, m=1) = if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 4*k))))}
A213010
G.f. satisfies: A(x) = x+x^2 + x*A(A(x)).
Original entry on oeis.org
1, 2, 4, 16, 80, 480, 3296, 25152, 209600, 1884160, 18110080, 184898304, 1994964736, 22654449664, 269855506944, 3362350046208, 43715434232832, 591812683833344, 8326660788725760, 121550217508892672, 1838089917983911936, 28753297176215257088, 464675647688625364992
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +...
where
A(A(x)) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +...
Related expansions.
Let B(B(x)) = A(x), then B(x) is an integer series:
B(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 + 6133*x^8 +...
where the coefficients of B(x) are congruent to 1 modulo 4.
-
{a(n)=local(A=x+2*x^2);for(i=1,n,A=x+x^2+x*subst(A,x,A+x*O(x^n)));polcoeff(A,n)}
for(n=1,31,print1(a(n),", "))
Comments