cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A078803 Triangular array T given by T(n,k) = number of compositions of n into k parts, each in the set {1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 0, 2, 6, 4, 1, 0, 1, 7, 10, 5, 1, 0, 0, 6, 16, 15, 6, 1, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1, 0, 0, 0, 0, 15, 126
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2002

Keywords

Comments

Number of lattice paths from (0,0) to (n,k) using steps (1,1), (2,1), (3,1). - Joerg Arndt, Jul 05 2011
Reversing the rows produces A078802. Row sums: A000073.
Number of tribonacci binary words of length n-1 having k-1 1's. A tribonacci binary word is a binary word having no three consecutive 0's. Example: T(6,3)=7 because we have 00101,00110,01001,01010,01100,10010 and 10100. - Emeric Deutsch, Jun 16 2007
This is the Riordan array (1,x+x^2+x^3)(A071675) without its column k=0. - Vladimir Kruchinin, Feb 10 2011

Examples

			T(5,2) = 2 counts the compositions 2+3 and 3+2.
Triangle begins
  1;
  1, 1;
  1, 2, 1;
  0, 3, 3, 1;
  0, 2, 6, 4, 1;
  0, 1, 7, 10, 5, 1;
  0, 0, 6, 16, 15, 6, 1;
  0, 0, 3, 19, 30, 21, 7, 1;
  0, 0, 1, 16, 45, 50, 28, 8, 1;
  0, 0, 0, 10, 51, 90, 77, 36, 9, 1;
  0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1;
  0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1;
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Cf. A027907, A078802, A030528 (parts <=2), A213887 (parts <=4), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    A078803 := proc(n,k) add( binomial(j,n-3*k+2*j)*binomial(k,j),j=0..k) ; end proc:
    # R. J. Mathar, Feb 22 2011
  • Mathematica
    nn=8;CoefficientList[Series[1/(1-y(x+x^2+x^3)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 08 2013 *)

Formula

T(n, k) = t(n-1, n-k), for 1<=k<=n, for n>=1, where the array t is given by A078802.
G.f.: 1/(1-t*z*(1+z+z^2))-1. - Emeric Deutsch, Mar 10 2004
T(n,k) = Sum_{j=0..k} C(j,n-3*k+2*j)*C(k,j). - Vladimir Kruchinin, Feb 10 2011

Extensions

More terms from Emeric Deutsch, Jun 16 2007

A061676 Triangle T(n,k) of number of ways of throwing k standard dice to produce a total of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 5, 21, 35, 35, 21, 7, 1, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1, 0, 2, 27, 104, 205, 252, 210, 120, 45, 10, 1, 0, 1, 25, 125, 305, 456, 462, 330, 165, 55, 11, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 01 2002

Keywords

Examples

			Rows start:
1;
1,1;
1,2,1;
1,3,3,1;
1,4,6,4,1;
1,5,10,10,5,1;
0,6,15,20,15,6,1;
0,5,21,35,35,21,7,1;
etc.
T(8,2)=5 since 8 =2+6 =3+5 =4+4 =5+3 =6+2.
		

Crossrefs

First 21 terms as A007318 (see formula). Cf. A001592, A069713.
Cf. A030528 (2-sided dice), A078803 (3-sided), A213887 (4-sided), A213888 (5-sided).

Programs

  • Maple
    pts := 6; # A213889 and A061676
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 1 to 13 do
        for k from 1 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

Formula

T(n, k)=T(n-1, k-1)+T(n-2, k-1)+T(n-3, k-1)+T(n-4, k-1)+T(n-5, k-1)+T(n-6, k-1) starting with T(0, 0)=1. T(n, k)=T(7k-n, k); if n>6k or n6k-6, T(n, k)=C(7k-n-1, k-1); T([7k/2], k)=A018901(k).

A172383 a(0)=1, otherwise a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*a(n-1-2*k).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 46, 118, 322, 903, 2653, 8053, 25194, 81387, 269667, 917529, 3197480, 11393821, 41497060, 154186653, 584151512, 2254240317, 8852998343, 35361762709, 143540660088, 591802631729, 2476701062087
Offset: 0

Views

Author

Paul Barry, Feb 01 2010

Keywords

Examples

			Eigensequence for number triangle
  1;
  1,  0;
  0,  1,  0;
  1,  0,  1,  0;
  0,  2,  0,  1,  0;
  1,  0,  3,  0,  1,  0;
  0,  3,  0,  4,  0,  1,  0;
  1,  0,  6,  0,  5,  0,  1,  0;
  0,  4,  0, 10,  0,  6,  0,  1,  0;
  1,  0, 10,  0, 15,  0,  7,  0,  1,  0;
  0,  5,  0, 20,  0, 21,  0,  8,  0,  1,  0;
(augmented version of Riordan array (1/(1-x^2), x/(1-x^2)), A030528.
		

Crossrefs

Cf. A030528.

Programs

  • Maple
    A172383 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n-k-1,k)*procname(n-1-2*k),k=0..floor((n-1)/2)) ;
        end if;
    end proc:
    seq(A172383(n),n=0..20) ; # R. J. Mathar, Feb 11 2015
  • Mathematica
    a[n_]:= If[n == 0, 1, Sum[Binomial[n-k-1, k]*a[n-2*k-1], {k, 0, Floor[(n-1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + (x/(1-x^2)) * A(x/(1-x^2)).

Extensions

Name corrected by R. J. Mathar, Feb 11 2015

A307501 Expansion of Product_{k>=1} (1 + (x*(1 - x))^k).

Original entry on oeis.org

1, 1, 0, 0, -3, 1, -1, 3, 3, 0, -12, 15, -20, 5, 53, -113, 180, -241, 153, 173, -652, 787, 628, -4801, 11635, -18699, 20775, -12315, -6109, 21253, -7015, -61060, 174382, -260676, 190623, 130141, -549572, 399845, 1577502, -6670524, 14603574, -21111528, 16110192, 14794188, -82586174
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[(1 + (x (1 - x))^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] (x (1 - x))^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[k, n - k] PartitionsQ[k], {k, 0, n}], {n, 0, 44}]

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d ) * (x*(1 - x))^k/k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*A000009(k).

A049324 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 3, 6, 1, 0, 15, 9, 1, 0, 18, 36, 12, 1, 0, 9, 81, 66, 15, 1, 0, 0, 108, 216, 105, 18, 1, 0, 0, 81, 459, 450, 153, 21, 1, 0, 0, 27, 648, 1305, 810, 210, 24, 1, 0, 0, 0, 594, 2673, 2970, 1323, 276, 27, 1, 0, 0, 0, 324, 3915, 7938
Offset: 1

Views

Author

Keywords

Examples

			{1}; {3,1}; {3,6,1}; {0,15,9,1}; {0,18,36,12,1}; ...
		

Crossrefs

a(n, m) := s1(-2, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.

Formula

a(n, m) = 3*(3*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(2, m)).

A284938 Triangle read by rows: coefficients of the edge cover polynomial for the n-path graph P_n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 06 2017

Keywords

Examples

			0;
0,1;
0,0,1;
0,0,1,1;
0,0,0,2,1;
0,0,0,1,3,1;
0,0,0,0,3,4,1;
0,0,0,0,1,6,5,1;
0,0,0,0,0,4,10,6,1;
0,0,0,0,0,1,10,15,7,1;
0,0,0,0,0,0,5,20,21,8,1;
0,0,0,0,0,0,1,15,35,28,9,1;
0,0,0,0,0,0,0,6,35,56,36,10,1;
0,0,0,0,0,0,0,1,21,70,84,45,11,1;
...
		

Crossrefs

Unsigned version of A057094.
Row sums are A000045(n-1).

Programs

  • Mathematica
    Prepend[CoefficientList[Table[x^(n/2) Fibonacci[n - 1, Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Prepend[CoefficientList[LinearRecurrence[{x, x}, {0, x}, {2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)

Formula

a(n) = abs(A057094(n)).

A339494 T(n, k) is the number of domino towers of n bricks with height at most 3 and k bricks in the base floor. Triangle read by rows, T(n, k) for 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 5, 9, 4, 1, 3, 14, 14, 5, 1, 1, 16, 29, 20, 6, 1, 0, 12, 46, 51, 27, 7, 1, 0, 5, 52, 101, 81, 35, 8, 1, 0, 1, 41, 150, 190, 120, 44, 9, 1, 0, 0, 22, 169, 345, 323, 169, 54, 10, 1, 0, 0, 7, 143, 495, 687, 511, 229, 65, 11, 1
Offset: 1

Views

Author

Peter Luschny, Dec 07 2020

Keywords

Comments

This is the third triangle in a sequence of triangles: The first is the unit triangle A023531; the second is the binomial triangle C(k, n-k) without the first column, triangle A030528. This triangle highlights the connection between the Pascal triangle and the Fibonacci numbers in the case m = 2. Similarly, the current triangle and its row sums generalizes this to the case m = 3 of the construction of Union(A333650(n, j), j=1..m), classified by the number of bricks in the base floor.

Examples

			Triangle starts:        n: [row] sum
                          1: [1] 1
                         2: [2, 1] 3
                       3: [5, 3, 1] 9
                     4: [5, 9, 4, 1] 19
                   5: [3, 14, 14, 5, 1] 37
                 6: [1, 16, 29, 20, 6, 1] 73
              7: [0, 12, 46, 51, 27, 7, 1] 144
            8: [0, 5, 52, 101, 81, 35, 8, 1] 283
         9: [0, 1, 41, 150, 190, 120, 44, 9, 1] 556
     10: [0, 0, 22, 169, 345, 323, 169, 54, 10, 1] 1093
		

Crossrefs

Cf. A339495 (row sums), A333650, A030528, A023531.

A005119 Infinitesimal generator of x*(x + 1).

Original entry on oeis.org

1, 1, 3, 16, 124, 1256, 15576, 226248, 3729216, 68179968, 1361836800, 29501349120, 693638208000, 17815908096000, 502048890201600, 15388268595840000, 500579319427891200, 16817771937344716800, 581609175119297740800
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Dec 09 2015: (Start)
Given a formal power series f(x) = x + f_2*x^2 + f_3*x^3 + ... Labelle [Section 4, Proposition 4] shows there is a power series w(x) = w_2*x^2 + w_3*x^3 + w_4*x^4 + ..., called the infinitesimal generator of f, such that the n-fold composition f^(n)(x) = f o f o ... o f (n factors) of f(x) is given by the operator exp( n*w(x)*d/dx ) acting on x. This gives the expansion f^(n)(x) = x + n/1!*w(x) + n^2/2!*w(x)*w'(x) + .... Taking n = -1 gives an expansion for the series reversion of f(x).
Let R denote the Riordan array (f(x)/x, f(x)). Then the coefficients of the infinitesimal generator w(x) form the first column of the matrix logarithm log(R).
Here we take f(x) = x + x^2 and calculate w(x) = x^2*(1 - x + 3*x^2/2! - 16*x^3/3! + 124*x^4/4! - ...). The numerators of the coefficients give a signed version of the present sequence. See the example below. (End)
a(29) = -307081193389527408920486163460915200000 is the first negative term. Georg Fischer, Feb 15 2019

Examples

			From _Peter Bala_, Dec 09 2015: (Start)
The Riordan array R = (1 + x, x*(1 + x)) is A030528.
log(R) begins
  /    0
  |    1          0
  |   -1         1*2        0
  |  3/2!       -1*2       1*3    0
  |-16/3!   (3/2!)*2      -1*3   1*4   0
  |124/4! (-16/3!)*2  (3/2!)*3  -1*4  1*5  0
  |...
  \
The first column begins [1, -1, 3/2!, -16/3! 124/4!, ...]. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030528.

Programs

  • Mathematica
    max = 19; f[x_] := Sum[a[n+1]*x^n/n!, {n, 0, max}]; coes = CoefficientList[ Series[ f[x]-((1-x)^2/(1-2*x))*f[x-x^2], {x, 0, max}], x]; Array[a, max] /. Solve[a[1] == a[2] == 1 && Thread[coes == 0]][[1]] (* Jean-François Alcover, Nov 03 2011 *)
    nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (n-2)! *Sum[(-1)^(i+1)*Binomial[n-i+1,i+1]*a[[n-i]]/(n-i-1)!,{i,1,n-1}],{n,2,nmax}]; a (* Vaclav Kotesovec, Mar 12 2014 *)
  • PARI
    {a(n)=if(n<1,0,if(n==1,1,(n-2)!*sum(i=1,n-1,(-1)^(i+1)*binomial(n-i+1,i+1)*a(n-i)/(n-i-1)!)))} \\ Paul D. Hanna, Dec 27 2007

Formula

a(n) = (n-2)!*Sum_{i=1..n-1} (-1)^(i+1)*C(n-i+1,i+1)*a(n-i)/(n-i-1)! for n>1 with a(1)=1. E.g.f. satisfies: A(x) = (1-x)^2/(1-2x)*A(x-x^2) where A(x) = Sum_{n>=0}a(n+1)*x^n/n! with offset so that A(0)=1. - Paul D. Hanna, Dec 27 2007

Extensions

More terms from Paul D. Hanna, Dec 27 2007

A049325 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 6, 1, 16, 12, 1, 16, 68, 18, 1, 0, 224, 156, 24, 1, 0, 448, 840, 280, 30, 1, 0, 512, 3072, 2080, 440, 36, 1, 0, 256, 7872, 10896, 4160, 636, 42, 1, 0, 0, 14080, 42240, 28240, 7296, 868, 48, 1, 0, 0, 16896, 123904, 145376, 60720, 11704, 1136, 54, 1, 0, 0, 12288
Offset: 1

Views

Author

Keywords

Examples

			{1}; {6,1}; {16,12,1}; {16,68,18,1}; {0,224,156,24,1}; ...
		

Crossrefs

a(n, m) := s1(-3, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528, s1(-2, n, m)= A049324(n, m).
Cf. A049349.

Formula

a(n, m) = 4*(4*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(3, m)).

A049326 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 10, 1, 50, 20, 1, 125, 200, 30, 1, 125, 1250, 450, 40, 1, 0, 5250, 4375, 800, 50, 1, 0, 15000, 30375, 10500, 1250, 60, 1, 0, 28125, 157500, 100500, 20625, 1800, 70, 1, 0, 31250, 621875, 740000, 250625, 35750, 2450, 80, 1, 0, 15625, 1875000, 4318750
Offset: 1

Views

Author

Keywords

Examples

			{1}; {10,1}; {50,20,1}; {125,200,30,1}; {125,1250,450,40,1}; ...
		

Crossrefs

a(n, m) := s1(-4, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.
Cf. A049350.

Formula

a(n, m) = 5*(5*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(4, m)).
Previous Showing 31-40 of 51 results. Next