cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 83 results. Next

A229309 Primitive numbers in A229305.

Original entry on oeis.org

10, 26, 43, 55, 57, 58, 136, 155, 222, 253, 355, 381, 737, 876, 904, 1027, 1055, 1081, 1552, 1711, 1751, 1962, 2696, 2758, 3197, 3403, 3411, 3775, 3916, 4063, 4401, 5093, 5671, 6176, 6567, 7111, 8251, 8515, 8702, 9316, 9465, 10768, 11026, 12195, 12742, 13301
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[80], !g[42*#] == # &]

A229310 Primitive numbers in A229306.

Original entry on oeis.org

7, 10, 26, 55, 57, 136, 155, 222, 253, 737, 876, 1027, 1081, 1552, 1711, 1751, 1962, 3197, 3403, 3775, 3916, 4401, 5671, 6176, 6567, 8251, 8515, 8702, 9316, 11026, 12195, 12742, 13301, 13861, 14878, 15657, 15931, 18145, 20242, 22387, 23126, 25651, 26202
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &];primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[500], !g[6*#] == # &]

A332517 a(n) = Sum_{k=1..n} gcd(n,k)^n.

Original entry on oeis.org

1, 5, 29, 274, 3129, 47515, 823549, 16843268, 387459861, 10009769725, 285311670621, 8918311856102, 302875106592265, 11112685048729175, 437893951473411261, 18447025557276459016, 827240261886336764193, 39346558373052524325225, 1978419655660313589123997
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Comments

If n is prime, a(n) = n-1 + n^n. - Robert Israel, Feb 16 2020

Crossrefs

Programs

  • Magma
    [&+[Gcd(n,k)^n:k in [1..n]]: n in [1..20]]; // Marius A. Burtea, Feb 15 2020
    
  • Maple
    f:= n -> add(igcd(n,k)^n,k=1..n):
    map(f, [$1..30]); # Robert Israel, Feb 16 2020
  • Mathematica
    Table[Sum[GCD[n, k]^n, {k, 1, n}], {n, 1, 19}]
    Table[Sum[EulerPhi[n/d] d^n, {d, Divisors[n]}], {n, 1, 19}]
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n - 1, d], {d, Divisors[n]}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, gcd(n, k)^n); \\ Michel Marcus, Feb 14 2020
    
  • Python
    from sympy import totient, divisors
    def A332517(n):
        return sum(totient(d)*(n//d)**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = Sum_{d|n} phi(n/d) * d^n.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-1)(d).
a(n) ~ n^n.
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^n*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k)*sigma_(n-1)(gcd(n,k))/phi(n/gcd(n,k)). (End)

A249459 a(n) = Sum_{k=0..n} k^(2*n).

Original entry on oeis.org

1, 1, 17, 794, 72354, 10874275, 2438235715, 762963987380, 317685943157892, 169842891165484965, 113394131858832552133, 92465351109879998121806, 90431265068257318469676710, 104479466717230437574945525959, 140782828210237288756752539959687
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(2*n),{k,1,n}],{n,1,20}]
    Table[n!*SeriesCoefficient[Sum[Exp[k^2*x], {k, 1, n}],{x,0,n}], {n,1,20}]
  • PARI
    a(n)=n!*polcoeff(sum(k=0, n, exp(k*x+x*O(x^n))^k), n);
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1-k^2*x))) \\ Seiichi Manyama, Dec 03 2021

Formula

E.g.f.: Sum_{n>=0} exp(n^2*x).
a(n) ~ exp(2)/(exp(2)-1) * n^(2*n).
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 - k^2 * x). - Seiichi Manyama, Dec 03 2021

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 03 2021

A120485 a(n) = n^n - (n-1)^n + (n-2)^n - ... + (-1)^(k+n)*k^n + ... + (-1)^(2+n)*2^n + (-1)^(1+n)*1^n = Sum_{k=1..n} (-1)^(k+n)*k^n.

Original entry on oeis.org

1, 1, 3, 20, 190, 2313, 34461, 607408, 12360636, 285188825, 7356173275, 209762134236, 6552069616170, 222481706868337, 8159714626124985, 321456928026650816, 13538204870285608696, 606979028986115413329
Offset: 0

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

p divides a(p-1) for prime p>2. p^k divides a(p^k-1) for all prime p and integer k>1. p^2 divides a(2p) and a(2p-1) for prime p>2. (p^k)^2 divides a(2p^k) for prime p>2 and integer k>0. (p^k)^2 divides a(2p^k-1) for all prime p and integer k>1.
It seems that a(n) ~ k*n^n with k = e/(e+1). - Charles R Greathouse IV, May 26 2015

Crossrefs

Main diagonal of A091884.

Programs

  • Magma
    [(-1)^n*(&+[(-1)^k*k^n: k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Table[Sum[(-1)^(k+n)*k^n,{k,1,n}],{n,1,25}]
  • PARI
    a(n)=abs(sum(i=1,n,i^n*(-1)^i)) \\ Charles R Greathouse IV, May 26 2015
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1+k*x))) \\ Seiichi Manyama, Dec 03 2021
    
  • SageMath
    [(-1)^n*sum((-1)^k*k^n for k in range(n+1)) for n in range(41)] # G. C. Greubel, Nov 01 2022

Formula

a(n) = Sum_{k=1..n} (-1)^(k+n)*k^n.
a(n) = (-1)^n*((-1+2^(n+1))*Zeta[ -n] + (-2)^n*((Zeta[ -n,(n+1)/2] - Zeta[ -n,(n+2)/2]))).
a(n) = n! * [x^n] exp(x)*(exp(n*x) + 1)/(exp(x) + 1). - Ilya Gutkovskiy, Apr 07 2018
G.f.: Sum_{k>=0} (k * x)^k/(1 + k * x). - Seiichi Manyama, Dec 03 2021

A226960 Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 2 (mod n).

Original entry on oeis.org

1, 4, 12, 84, 3612
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 2 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -2 (mod n). - Max Alekseyev, Aug 25 2013

Crossrefs

Subsequence of A124240.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), this sequence (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 2 &]
  • PARI
    is(n)=if(n%2,return(n==1)); Mod(sumdiv(n/2,d, if(isprime(2*d+1), n/(2*d+1)))+n/2,n)==-2 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 25 2013

A226961 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 3 (mod n).

Original entry on oeis.org

1, 2, 3, 18, 126, 5418
Offset: 1

Views

Author

Keywords

Comments

Equivalently, numbers n such that B(n)*n == 3 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -3 (mod n). - Max Alekseyev, Aug 25 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), this sequence (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1, 2, 3 prepended by Max Alekseyev, Aug 25 2013

A226963 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 5 (mod n).

Original entry on oeis.org

1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 5 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -5 (mod n). - Max Alekseyev, Aug 26 2013
There are no other terms below 10^31. - Max Alekseyev, Apr 04 2018

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), this sequence (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 5 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-5 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Terms 1,2,5 prepended and a(9) added by Max Alekseyev, Aug 26 2013

A226967 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 9 (mod n).

Original entry on oeis.org

1, 2, 3, 9, 54, 378, 16254
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 9 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -9 (mod n). There are no other terms below 10^30. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), this sequence (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == Mod[9,#] &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-9 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1,2,9 prepended by Max Alekseyev, Aug 26 2013

A226962 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 4 (mod n).

Original entry on oeis.org

1, 8, 24, 168, 7224
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 4 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -4 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), this sequence (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 4 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-4 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 26 2013
Previous Showing 21-30 of 83 results. Next