cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 83 results. Next

A233045 1^m + 2^m + ... + m^m (mod m) for primary pseudoperfect numbers m.

Original entry on oeis.org

1, 1, 1, 1, 5797, 272753965, 8749232767, 1045741078641946876220133713545
Offset: 1

Views

Author

Jonathan Sondow, Dec 10 2013

Keywords

Comments

A031971(m) (mod m) for m in A054377 = 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086. The known values of m for which 1^m + 2^m + ... + m^m == 1 (mod m) are m = 1, 2, 6, 42, 1806.
For any m and prime p | m, use Sum_{j=1..m} j^m == -m/p (mod p) if p-1 | m or == 0 (mod p) otherwise (see Lemma 3 in Grau et al.) and the Chinese Remainder Theorem.

Examples

			The 1st primary pseudoperfect number is 2, and 1^2 + 2^2 = 5 == 1 (mod 2), so a(1) = 1.
		

Crossrefs

Programs

  • Mathematica
    ps={2, 6, 42, 1806, 47058, 2214502422,52495396602, 8490421583559688410706771261086}; fa = FactorInteger; VonStaudt[n_] := Mod[n - Sum[If[IntegerQ[n/(fa[n][[i, 1]] - 1)], n/fa[n][[i, 1]], 0], {i, Length[fa[n]]}], n]; Table[VonStaudt[ps[[i]]], {i, 1, 8}]

Formula

a(n) = 1 for n = 1, 2, 3, 4.

A276485 Numerator of Sum_{k=1..n} 1/k^n.

Original entry on oeis.org

1, 5, 251, 22369, 806108207, 47464376609, 774879868932307123, 248886558707571775009601, 4106541588424891370931874221019, 413520574906423083987893722912609, 7429165883912264897181708263009894640627544300697
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

Also numerators of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).

Examples

			1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 251, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
		

Crossrefs

Cf. A001008, A002805, A007406, A007407, A031971, A276487 (denominators).

Programs

  • Mathematica
    Table[Numerator[HarmonicNumber[n, n]], {n, 1, 11}]
  • PARI
    a(n) = numerator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016

A291140 Sum of the n-th powers of the first n primes.

Original entry on oeis.org

2, 13, 160, 3123, 181258, 6732437, 493478344, 24995572327, 2255433009730, 470444892889497, 38714638073629150, 7749166585021832891, 1203906832960860262108, 121893712541593098356317, 17161342484454585041813494
Offset: 1

Views

Author

Vojtech Strnad, Aug 18 2017

Keywords

Examples

			a(3) = 2^3 + 3^3 + 5^3 = 160.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(ithprime(i)^n,i=1..n):
    map(f, [$1..20]); # Robert Israel, Aug 20 2017
  • Mathematica
    Table[Total[Prime[Range@ n]^n], {n, 15}] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = sum(i=1, n, prime(i)^n) \\ Felix Fröhlich, Aug 18 2017

Formula

a(n) = prime(1)^n + prime(2)^n + ... + prime(n)^n.

A342396 a(n) = Sum_{k=1..n} k^(n/gcd(k,n) - 1).

Original entry on oeis.org

1, 2, 6, 31, 355, 3150, 67172, 904085, 22998481, 427799450, 14914341926, 287337926355, 13421957361111, 339940911160914, 15434209582905140, 493467700905592777, 28101527071305611529, 836396358233559195382
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^(n/GCD[k, n] - 1), {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Mar 10 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^(n/gcd(k, n)-1));

Formula

If p is prime, a(p) = A031971(p-1) + 1.

A349964 a(n) = Sum_{k=0..n} (k*n)^n.

Original entry on oeis.org

1, 1, 20, 972, 90624, 13828125, 3133930176, 988501957072, 414139067400192, 222497518123837665, 149143419250000000000, 122020951254446884154196, 119671520043865789861724160, 138593796657903100873209121453
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (k*n)^n], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*n)^n);

Formula

a(n) = n^n * [x^n] Sum_{k>=0} (k * x)^k/(1 - k * x) = n^n * A031971(n).
a(n) ~ c * n^(2*n), where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Dec 07 2021

A068477 a(n) is the digital sum of 1^n + 2^n + ... + n^n.

Original entry on oeis.org

0, 1, 5, 9, 12, 15, 22, 10, 33, 45, 43, 60, 44, 79, 70, 72, 65, 90, 111, 91, 125, 117, 132, 168, 133, 127, 171, 189, 172, 195, 218, 232, 217, 234, 221, 243, 240, 280, 290, 261, 315, 348, 352, 325, 345, 351, 346, 303, 338, 367, 373, 396, 404, 414, 495, 424, 428
Offset: 0

Views

Author

Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002

Keywords

Programs

  • Maple
    dig := X->convert((convert(X,base,10)),`+`); a := n->dig(sum(m^n,m=1..n));
  • Mathematica
    Table[Sum[DigitCount[Sum[k^n, {k, 1, n}]][[i]]*i, {i, 9}], {n, 0, 100}] (* G. C. Greubel, Oct 13 2018 *)
  • PARI
    a(n) = sumdigits(sum(k=1, n, k^n)); \\ Michel Marcus, Oct 14 2018

Formula

a(n) = A007953(A031971(n))

A096141 a(n) = sum of n n-th powers starting from n^n.

Original entry on oeis.org

1, 13, 216, 4578, 119525, 3729451, 135771160, 5658574916, 265921407297, 13918657338925, 803220053336096, 50674352524725590, 3470170166345203477, 256369124879898560271, 20325382637400264402000
Offset: 1

Views

Author

Amarnath Murthy, Jul 16 2004

Keywords

Examples

			a(4) = 4^4 +5^4 + 6^4 +7^4 = 4578.
		

Crossrefs

Cf. A031971.

Programs

  • Mathematica
    Table[Total[Range[n,2n-1]^n],{n,20}] (* Harvey P. Dale, Aug 23 2019 *)
  • PARI
    a(n)=sum(k=n,2*n-1,k^n)

Formula

a(n) = n! * [x^n] exp(n*x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018

Extensions

Extended by Ray Chandler, Jul 17 2004

A119758 Numerator of Sum_{k=1..n} k^n/n^k.

Original entry on oeis.org

1, 3, 20, 225, 3789, 89341, 2821552, 115377921, 5939637425, 375840753541, 28641787322796, 2583828842108449, 271949027324094925, 32986652806128680205, 4563200871898056653504, 713455071424061222336513
Offset: 1

Views

Author

Alexander Adamchuk, Jun 18 2006, Jun 25 2006

Keywords

Comments

a(p-1) is divisible by prime p>2. a(p) is divisible by ((p+1)/2)^2 for prime p>2.
Denominator of Sum[k^n/n^k,{k,1,n}] is equal to n^(n-1) = A000169(n). - Alexander Adamchuk, Jun 27 2006

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[k^n/n^k,{k,1,n}]],{n,1,20}]
    Table[Sum[k^n/n^k,{k,1,n}]*n^(n-1),{n,1,50}] (* Alexander Adamchuk, Jun 27 2006 *)
  • PARI
    a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022

Formula

a(n) = numerator(Sum_{k=1..n} k^n/n^k).
a(n) = n^(n-1)*(Sum_{k=1..n} k^n/n^k). - Alexander Adamchuk, Jun 27 2006
a(2m) is divisible by 2m+1 for integer m>0. a(2m-1) is divisible by m^2 for integer m>0. - Alexander Adamchuk, Jun 27 2006

A120487 Denominator of 1^n/n + 2^n/(n-1) + 3^n/(n-2) + ... + (n-1)^n/2 + n^n/1.

Original entry on oeis.org

1, 2, 3, 12, 5, 20, 35, 280, 63, 2520, 385, 27720, 6435, 8008, 45045, 720720, 85085, 4084080, 969969, 739024, 29393, 5173168, 7436429, 356948592, 42902475, 2974571600, 717084225, 80313433200, 215656441, 2329089562800, 4512611027925
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

Numerator is A115071(n).
Also a(n) is denominator of (n+1)^(n+1) * (H(n+1) - 1), where H(k) is harmonic number, H(k) = Sum_{i=1..k} 1/i = A001008(k)/A002805(k). - Alexander Adamchuk, Jan 02 2007

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[k^n/(n-k+1),{k,1,n}],{n,1,50}]]
    Table[ Denominator[ (n+1)^(n+1) * Sum[ 1/i,{i,2,n+1} ] ], {n,1,40} ] (* Alexander Adamchuk, Jan 02 2007 *)

Formula

a(n) = denominator(Sum_{k=1..n} k^n/(n-k+1)).
a(n) = denominator((n+1)^(n+1) * Sum_{i=2..n+1} 1/i). - Alexander Adamchuk, Jan 02 2007

A225821 a(n) = Product_{p | p is prime and p, p-1 both divide n}.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 10, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 10, 1, 42, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 10, 1, 2, 1, 42
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 iff n is even and is a term of A226872. - Daniel Suteu, Jul 28 2019
From Bernard Schott, Jul 30 2019: (Start)
a(n) = n if n = 1, 2, 6, 42, 1806.
a(n) = 6 if n is of the form 2^i*3^j, i and j >= 1, so if n is a term of A033845.
a(n) = 10 if n is of the form 2^i*5^j, i >= 2 and j >= 1.
a(n) = 30 if n is of the form 2^i*3^j*5^k, i >=2, j >= 1 and k >= 1. (End)

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger; d[m_]:= Product[If[IntegerQ[m/(fa[m][[i, 1]]-1)],fa[m][[i, 1]], 1], {i, Length@fa@m}]; Table[d[n], {n, 1, 333}]
  • PARI
    a(n)=my(f=factor(n)[,1]); prod(i=1,#f,if(n%(f[i]-1)==0,f[i],1)) \\ Charles R Greathouse IV, Nov 13 2013
  • Sage
    def A225821(n) : return prod(p for (p,m) in factor(n) if n%(p-1)==0) # Eric M. Schmidt, Jul 31 2013
    

Formula

a(n) = denominator(A031971(n)/n) = gcd(n, A027642(n)). - Daniel Suteu, Jul 28 2019
Previous Showing 61-70 of 83 results. Next