cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A114121 Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)).

Original entry on oeis.org

1, 2, 7, 26, 99, 382, 1486, 5812, 22819, 89846, 354522, 1401292, 5546382, 21977516, 87167164, 345994216, 1374282019, 5461770406, 21717436834, 86392108636, 343801171354, 1368640564996, 5450095992964, 21708901408216, 86492546019214
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Second binomial transform of A032443 with interpolated zeros.
a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - David Callan, Jul 14 2006
Hankel transform is binomial(n + 2, 2). - Paul Barry, Dec 04 2007
Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - Paul Barry, Jun 15 2008
From Gus Wiseman, Jun 21 2021: (Start)
Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are:
(6) (33) (114) (1122) (11112) (111111)
(42) (123) (1131) (11121)
(51) (132) (1221) (11211)
(213) (2112) (12111)
(222) (2121) (21111)
(231) (2211)
(312) (3111)
(321)
(411)
(End)

Examples

			G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ...
		

Crossrefs

The case of alternating sum = 0 is A001700.
The case of alternating sum < 0 is A008549.
This is the even bisection of A116406.
The restriction to reversed partitions is A344611.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    seq(sum(binomial(2*n,2*k+irem(n,2)),k=0..floor((1/2)*n)),n=0..20)
    seq(binomial(2*n-1,n)+4^(n-1)-(1/4)*0^n,n=0..20)
  • Mathematica
    a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* Michael Somos, Dec 31 2013 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15,2}] (* Gus Wiseman, Jun 21 2021 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k).
a(n) = (A000984(n) + A081294(n))/2.
From Paul Barry, Jun 15 2008: (Start)
G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)).
a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End)
a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - Paul Barry, Aug 06 2009
From Paul Barry, Sep 07 2009: (Start)
a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4.
Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End)
a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - Mircea Merca, Jun 21 2011
Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 07 2012
Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - Robert Israel, Jul 27 2020
a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - Yalcin Aktar, Jan 07 2013.
G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - Michael Somos, Dec 31 2013
0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
For n > 0, a(n) = 2^(2n-1) - A008549(n). - Gus Wiseman, Jun 27 2021
a(n) = [x^n] 1/((1-2*x) * (1-x)^(n-1)). - Seiichi Manyama, Apr 10 2024

A294175 a(n) = 2^(n-1) + ((1+(-1)^n)/4)*binomial(n, n/2) - binomial(n, floor(n/2)).

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 22, 29, 93, 130, 386, 562, 1586, 2380, 6476, 9949, 26333, 41226, 106762, 169766, 431910, 695860, 1744436, 2842226, 7036530, 11576916, 28354132, 47050564, 114159428, 190876696, 459312152, 773201629, 1846943453, 3128164186, 7423131482
Offset: 0

Views

Author

Enrique Navarrete, Feb 10 2018

Keywords

Comments

Number of subsets of {1,2,...,n} that contain more even than odd numbers.
Note that A058622 counts the nonempty subsets of {1,2,...,n} that contain more odd than even numbers.
From Gus Wiseman, Jul 22 2021: (Start)
Also the number of integer compositions of n + 1 with alternating sum < 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(0) = 0 through a(6) = 6 compositions (empty columns indicated by dots) are:
. . (12) (13) (14) (15)
(23) (24)
(131) (141)
(1112) (1113)
(1211) (1212)
(1311)
Also the number of integer compositions of n + 1 with reverse-alternating sum < 0. For a bijection, keep the odd-length compositions and reverse the even-length ones.
Also the number of (n+1)-digit binary numbers with more 0's than 1's. For example, the a(0) = 0 through a(5) = 6 binary numbers are:
. . 100 1000 10000 100000
10001 100001
10010 100010
10100 100100
11000 101000
110000
(End)
2*a(n) is the number of all-positive pinnacle sets that are admissible in the group S_{n+1}^B of signed permutations, but not admissible in S_{n+1}. - Bridget Tenner, Jan 06 2023

Examples

			For example, for n=5, a(5)=6 and the 6 subsets are {2}, {4}, {2,4}, {1,2,4}, {2,3,4}, {2,4,5}.
		

Crossrefs

The even bisection is A000346.
The odd bisection is A008549.
The following relate to compositions of n + 1 with alternating sum k < 0.
- The k = 1 version is A000984, ranked by A345909/A345911.
- The opposite (k > 0) version is A027306, ranked by A345917/A345918.
- The weak (k <= 0) version A058622, ranked by A345915/A345916.
- The k != 0 version is also A058622, ranked by A345921.
- The complement (k >= 0) is counted by A116406, ranked by A345913/A345914.
- The k = 0 version is A138364, ranked by A344619.
- The unordered version is A344608, ranked by A119899.
- Ranked by A345919 (reverse: A345920).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A101211 lists run-lengths in binary expansion (reverse: A227736).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Maple
    f:= gfun:-rectoproc({(8+8*n)*a(n)+(4*n+16)*a(1+n)+(-20-6*n)*a(n+2)+(-5-n)*a(n+3)+(5+n)*a(n+4), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1}, a(n), remember):
    map(f, [$0..40]); # Robert Israel, Feb 12 2018
  • Mathematica
    f[n_] := 2^(n - 1) + ((1 + (-1)^n)/4) Binomial[n, n/2] - Binomial[n, Floor[n/2]]; Array[f, 38, 0] (* Robert G. Wilson v, Feb 10 2018 *)
    Table[Length[Select[Tuples[{0,1},{n+1}],First[#]==1&&Count[#,0]>Count[#,1]&]],{n,0,10}] (* Gus Wiseman, Jul 22 2021 *)

Formula

From Robert Israel, Feb 12 2018: (Start)
G.f.: (x+1)*sqrt(1-4*x^2)/(2*x*(4*x^2-1))+(x-1)/(2*(2*x-1)*x).
D-finite with recurrence: (8+8*n)*a(n)+(4*n+16)*a(1+n)+(-20-6*n)*a(n+2)+(-5-n)*a(n+3)+(5+n)*a(n+4) = 0. (End)

A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - Paul Barry, Feb 03 2005
Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - Paul Barry, Jan 30 2005; edited by Wolfdieter Lang, Jan 09 2015
Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - Gary W. Adamson, Apr 16 2009
Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - Peter Bala, Jan 13 2016

Examples

			The triangle a(n,m) begins:
n\m    0    1    2   3   4   5   6   7  8  9 10 ...
0:     1
1:     2    1
2:     4    3    1
3:     8    7    4   1
4:    16   15   11   5   1
5:    32   31   26  16   6   1
6:    64   63   57  42  22   7   1
7:   128  127  120  99  64  29   8   1
8:   256  255  247 219 163  93  37   9  1
9:   512  511  502 466 382 256 130  46 10  1
10: 1024 1023 1013 968 848 638 386 176 56 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
   1;
  -2,   1;
   2,  -3,   1;
  -2,   5,  -4,    1;
   2,  -7,   9,   -5,    1;
  -2,   9, -16,   14,   -6,    1;
   2, -11,  25,-  30,   20,   -7,    1;
  -2,  13, -36,   55,  -50,   27,   -8,    1;
   2, -15,  49,  -91,  105,  -77,   35,   -9,  1;
  -2,  17, -64,  140, -196,  182, -112,   44, -10,   1;
   2, -19,  81, -204,  336, -378,  294, -156,  54, -11, 1;
   ...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1       \       /1       \
|2 1     ||0 1       ||0 1      |      |2  1     |
|4 3 1   ||0 2 1     ||0 0 1    |... = |4  5 1   |
|8 7 4 1 ||0 4 3 1   ||0 0 2 1  |      |8 19 9 1 |
|...     ||0 8 7 4 1 ||0 0 4 3 1|      |...      |
|...     ||...       ||...      |      |         |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1      \ /1        \ /1 1 1 1 ...\    /1  1  1  1 ...\
|1 1     ||1 1       ||0 1 2 3 ... |   |2  3  4  5 ... |
|1 2 1   ||1 1 1     ||0 0 1 3 ... | = |4  7 11 16 ... |
|1 3 3 1 ||1 1 1 1   ||0 0 0 1 ... |   |8 15 26 42 ... |
|...     ||...       ||...         |   |...            |
- _Peter Bala_, Jan 13 2016
		

Crossrefs

Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
Row sums: A001792(n) = A055249(n, 0).
Alternating row sums: A011782.
Cf. A011971, A159573. - Gary W. Adamson, Apr 16 2009

Programs

  • Haskell
    a055248 n k = a055248_tabl !! n !! k
    a055248_row n = a055248_tabl !! n
    a055248_tabl = map reverse a008949_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
    seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
  • Mathematica
    a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
    T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* Peter Luschny, Oct 06 2023 *)

Formula

a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - Peter Bala, Mar 03 2025

A345917 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum > 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 11, 14, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 44, 45, 47, 52, 56, 57, 59, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 100, 104, 105, 107
Offset: 1

Author

Gus Wiseman, Jul 08 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
     1: (1)
     2: (2)
     4: (3)
     5: (2,1)
     7: (1,1,1)
     8: (4)
     9: (3,1)
    11: (2,1,1)
    14: (1,1,2)
    16: (5)
    17: (4,1)
    18: (3,2)
    19: (3,1,1)
    21: (2,2,1)
    22: (2,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A026424.
These compositions are counted by A027306.
These are the positions of terms > 0 in A124754.
The weak (k >= 0) version is A345913.
The reverse-alternating version is A345918.
The opposite (k < 0) version is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>0&]

A345913 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           17: (4,1)          37: (3,2,1)
     1: (1)          18: (3,2)          38: (3,1,2)
     2: (2)          19: (3,1,1)        39: (3,1,1,1)
     3: (1,1)        21: (2,2,1)        41: (2,3,1)
     4: (3)          22: (2,1,2)        42: (2,2,2)
     5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
     7: (1,1,1)      26: (1,2,2)        44: (2,1,3)
     8: (4)          28: (1,1,3)        45: (2,1,2,1)
     9: (3,1)        29: (1,1,2,1)      46: (2,1,1,2)
    10: (2,2)        31: (1,1,1,1,1)    47: (2,1,1,1,1)
    11: (2,1,1)      32: (6)            50: (1,3,2)
    13: (1,2,1)      33: (5,1)          52: (1,2,3)
    14: (1,1,2)      34: (4,2)          53: (1,2,2,1)
    15: (1,1,1,1)    35: (4,1,1)        55: (1,2,1,1,1)
    16: (5)          36: (3,3)          56: (1,1,4)
		

Crossrefs

These compositions are counted by A116406.
These are the positions of terms >= 0 in A124754.
The version for prime indices is A344609.
The reverse-alternating sum version is A345914.
The opposite (k <= 0) version is A345915.
The strict (k > 0) version is A345917.
The complement is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>=0&]

A345919 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum < 0.

Original entry on oeis.org

6, 12, 20, 24, 25, 27, 30, 40, 48, 49, 51, 54, 60, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 144, 160, 161, 163, 166, 172, 184, 192, 193, 194, 195, 197, 198, 199, 202, 204, 205, 207, 212, 216, 217, 219
Offset: 1

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      6: (1,2)         81: (2,4,1)
     12: (1,3)         83: (2,3,1,1)
     20: (2,3)         86: (2,2,1,2)
     24: (1,4)         92: (2,1,1,3)
     25: (1,3,1)       96: (1,6)
     27: (1,2,1,1)     97: (1,5,1)
     30: (1,1,1,2)     98: (1,4,2)
     40: (2,4)         99: (1,4,1,1)
     48: (1,5)        101: (1,3,2,1)
     49: (1,4,1)      102: (1,3,1,2)
     51: (1,3,1,1)    103: (1,3,1,1,1)
     54: (1,2,1,2)    106: (1,2,2,2)
     60: (1,1,1,3)    108: (1,2,1,3)
     72: (3,4)        109: (1,2,1,2,1)
     80: (2,5)        111: (1,2,1,1,1,1)
		

Crossrefs

The version for Heinz numbers of partitions is A119899.
These are the positions of terms < 0 in A124754.
These compositions are counted by A294175 (even bisection: A008549).
The complement is A345913.
The weak (k <= 0) version is A345915.
The opposite (k < 0) version is A345917.
The version for reversed alternating sum is A345920.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]<0&]

A345923 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -2.

Original entry on oeis.org

9, 34, 39, 45, 49, 57, 132, 139, 142, 149, 154, 159, 161, 169, 178, 183, 189, 194, 199, 205, 209, 217, 226, 231, 237, 241, 249, 520, 531, 534, 540, 549, 554, 559, 564, 571, 574, 577, 585, 594, 599, 605, 612, 619, 622, 629, 634, 639, 642, 647, 653, 657, 665
Offset: 1

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      9: (3,1)            183: (2,1,2,1,1,1)
     34: (4,2)            189: (2,1,1,1,2,1)
     39: (3,1,1,1)        194: (1,5,2)
     45: (2,1,2,1)        199: (1,4,1,1,1)
     49: (1,4,1)          205: (1,3,1,2,1)
     57: (1,1,3,1)        209: (1,2,4,1)
    132: (5,3)            217: (1,2,1,3,1)
    139: (4,2,1,1)        226: (1,1,4,2)
    142: (4,1,1,2)        231: (1,1,3,1,1,1)
    149: (3,2,2,1)        237: (1,1,2,1,2,1)
    154: (3,1,2,2)        241: (1,1,1,4,1)
    159: (3,1,1,1,1,1)    249: (1,1,1,1,3,1)
    161: (2,5,1)          520: (6,4)
    169: (2,2,3,1)        531: (5,3,1,1)
    178: (2,1,3,2)        534: (5,2,1,2)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A344618.
The case of partitions of 2n is A344741.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-2&]

A345920 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum < 0.

Original entry on oeis.org

5, 9, 17, 18, 23, 25, 29, 33, 34, 39, 45, 49, 57, 65, 66, 68, 71, 75, 77, 78, 81, 85, 89, 90, 95, 97, 98, 103, 105, 109, 113, 114, 119, 121, 125, 129, 130, 132, 135, 139, 141, 142, 149, 153, 154, 159, 161, 169, 177, 178, 183, 189, 193, 194, 199, 205, 209, 217
Offset: 1

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      5: (2,1)         68: (4,3)
      9: (3,1)         71: (4,1,1,1)
     17: (4,1)         75: (3,2,1,1)
     18: (3,2)         77: (3,1,2,1)
     23: (2,1,1,1)     78: (3,1,1,2)
     25: (1,3,1)       81: (2,4,1)
     29: (1,1,2,1)     85: (2,2,2,1)
     33: (5,1)         89: (2,1,3,1)
     34: (4,2)         90: (2,1,2,2)
     39: (3,1,1,1)     95: (2,1,1,1,1,1)
     45: (2,1,2,1)     97: (1,5,1)
     49: (1,4,1)       98: (1,4,2)
     57: (1,1,3,1)    103: (1,3,1,1,1)
     65: (6,1)        105: (1,2,3,1)
     66: (5,2)        109: (1,2,1,2,1)
		

Crossrefs

The version for prime indices is {}.
The version for Heinz numbers of partitions is A119899.
These compositions are counted by A294175 (even bisection: A008549).
These are the positions of terms < 0 in A344618.
The complement is A345914.
The weak (k <= 0) version is A345916.
The opposite (k > 0) version is A345918.
The version for unreversed alternating sum is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]<0&]

A345921 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum != 0.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also numbers k such that the k-th composition in standard order has reverse-alternating sum != 0.

Examples

			The initial terms and the corresponding compositions:
     1: (1)        20: (2,3)          35: (4,1,1)
     2: (2)        21: (2,2,1)        37: (3,2,1)
     4: (3)        22: (2,1,2)        38: (3,1,2)
     5: (2,1)      23: (2,1,1,1)      39: (3,1,1,1)
     6: (1,2)      24: (1,4)          40: (2,4)
     7: (1,1,1)    25: (1,3,1)        42: (2,2,2)
     8: (4)        26: (1,2,2)        44: (2,1,3)
     9: (3,1)      27: (1,2,1,1)      45: (2,1,2,1)
    11: (2,1,1)    28: (1,1,3)        47: (2,1,1,1,1)
    12: (1,3)      29: (1,1,2,1)      48: (1,5)
    14: (1,1,2)    30: (1,1,1,2)      49: (1,4,1)
    16: (5)        31: (1,1,1,1,1)    51: (1,3,1,1)
    17: (4,1)      32: (6)            52: (1,2,3)
    18: (3,2)      33: (5,1)          54: (1,2,1,2)
    19: (3,1,1)    34: (4,2)          56: (1,1,4)
		

Crossrefs

The version for Heinz numbers of partitions is A000037.
These compositions are counted by A058622.
These are the positions of terms != 0 in A124754.
The complement (k = 0) is A344619.
The positive (k > 0) version is A345917 (reverse: A345918).
The negative (k < 0) version is A345919 (reverse: A345920).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]!=0&]

A345914 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 70, 72, 73, 74, 76, 79, 80, 82, 83, 84, 86, 87, 88
Offset: 1

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           19: (3,1,1)        40: (2,4)
     1: (1)          20: (2,3)          41: (2,3,1)
     2: (2)          21: (2,2,1)        42: (2,2,2)
     3: (1,1)        22: (2,1,2)        43: (2,2,1,1)
     4: (3)          24: (1,4)          44: (2,1,3)
     6: (1,2)        26: (1,2,2)        46: (2,1,1,2)
     7: (1,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
     8: (4)          28: (1,1,3)        48: (1,5)
    10: (2,2)        30: (1,1,1,2)      50: (1,3,2)
    11: (2,1,1)      31: (1,1,1,1,1)    51: (1,3,1,1)
    12: (1,3)        32: (6)            52: (1,2,3)
    13: (1,2,1)      35: (4,1,1)        53: (1,2,2,1)
    14: (1,1,2)      36: (3,3)          54: (1,2,1,2)
    15: (1,1,1,1)    37: (3,2,1)        55: (1,2,1,1,1)
    16: (5)          38: (3,1,2)        56: (1,1,4)
		

Crossrefs

The version for prime indices is A000027, counted by A000041.
These compositions are counted by A116406.
The case of non-Heinz numbers of partitions is A119899, counted by A344608.
The version for Heinz numbers of partitions is A344609, counted by A344607.
These are the positions of terms >= 0 in A344618.
The version for unreversed alternating sum is A345913.
The opposite (k <= 0) version is A345916.
The strict (k > 0) case is A345918.
The complement is A345920, counted by A294175.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]>=0&]
Previous Showing 11-20 of 62 results. Next