cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A097805 Number of compositions of n with k parts, T(n, k) = binomial(n-1, k-1) for n, k >= 1 and T(n, 0) = 0^n, triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Previous name was: Riordan array (1, 1/(1-x)) read by rows.
Note this Riordan array would be denoted (1, x/(1-x)) by some authors.
Columns have g.f. (x/(1-x))^k. Reverse of A071919. Row sums are A011782. Antidiagonal sums are Fibonacci(n-1). Inverse as Riordan array is (1, 1/(1+x)). A097805=B*A059260*B^(-1), where B is the binomial matrix.
(0,1)-Pascal triangle. - Philippe Deléham, Nov 21 2006
(n+1) * each term of row n generates triangle A127952: (1; 0, 2; 0, 3, 3; 0, 4, 8, 4; ...). - Gary W. Adamson, Feb 09 2007
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2008
From Paul Weisenhorn, Feb 09 2011: (Start)
Triangle read by rows: T(r,c) is the number of unordered partitions of n=r*(r+1)/2+c into (r+1) parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2.
Triangle read by rows: T(r,c) is the number of unordered partitions of the number n=r*(r+1)/2+(c-1) into r parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2. (End)
Triangle read by rows: T(r,c) is the number of ordered partitions (compositions) of r into c parts. - Juergen Will, Jan 04 2016
From Tom Copeland, Oct 25 2012: (Start)
Given a basis composed of a sequence of polynomials p_n(x) characterized by ladder (creation / annihilation, or raising / lowering) operators defined by R p_n(x) = p_(n+1)(x) and L p_n(x) = n p_(n-1)(x) with p_0(x)=1, giving the number operator # p_n(x) = RL p_n(x) = n p_n(x), the lower triangular padded Pascal matrix Pd (A097805) serves as a matrix representation of the operator exp(R^2*L) = exp(R#) =
1) exp(x^2D) for the set x^n and
2) D^(-1) exp(t*x)D for the set x^n/n! (see A218234).
(End)
From James East, Apr 11 2014: (Start)
Square array a(m,n) with m,n=0,1,2,... read by off-diagonals.
a(m,n) gives the number of order-preserving functions f:{1,...,m}->{1,...,n}. Order-preserving means that x
a(n,n)=A088218(n) is the size of the semigroup O_n of all order-preserving transformations of {1,...,n}.
Read as a triangle, this sequence may be obtained by augmenting Pascal's triangle by appending the column 1,0,0,0,... on the left.
(End)
A formula based on the partitions of n with largest part k is given as a Sage program below. The 'conjugate' formula leads to A048004. - Peter Luschny, Jul 13 2015
From Wolfdieter Lang, Feb 17 2017: (Start)
The transposed of this lower triangular Riordan matrix of the associated type T provides the transition matrix between the monomial basis {x^n}, n >= 0, and the basis {y^n}, n >= 0, with y = x/(1-x): x^0 = 1 = y^0, x^n = Sum_{m >= n} Ttrans(n,m) y^m, for n >= 1, with Ttrans(n,m) = binomial(m-1,n-1).
Therefore, if a transformation with this Riordan matrix from a sequence {a} to the sequence {b} is given by b(n) = Sum_{m=0..n} T(n, m)*a(m), with T(n, m) = binomial(n-1, m-1), for n >= 1, then Sum_{n >= 0} a(n)*x^n = Sum_{n >= 0} b(n)*y^n, with y = x/(1-x) and vice versa. This is a modified binomial transformation; the usual one belongs to the Pascal Riordan matrix A007318. (End)
From Gus Wiseman, Jan 23 2022: (Start)
Also the number of compositions of n with alternating sum k, with k ranging from -n to n in steps of 2. For example, row n = 6 counts the following compositions (empty column indicated by dot):
. (15) (24) (33) (42) (51) (6)
(141) (132) (123) (114)
(1113) (231) (222) (213)
(1212) (1122) (321) (312)
(1311) (1221) (1131) (411)
(2112) (2121)
(2211) (3111)
(11121) (11112)
(12111) (11211)
(111111) (21111)
The reverse-alternating version is the same. Counting compositions by all three parameters (sum, length, alternating sum) gives A345197. Compositions of 2n with alternating sum 2k with k ranging from -n + 1 to n are A034871. (End)
Also the convolution triangle of A000012. - Peter Luschny, Oct 07 2022
From Sergey Kitaev, Nov 18 2023: (Start)
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k right-to-left maxima. A right-to-left maximum in a permutation a(1)a(2)...a(n) is position i such that a(j) < a(i) for all i < j.
Number of permutations of length n avoiding simultaneously the patterns 231 and 312 with k right-to-left minima (resp., left-to-right maxima). A right-to-left minimum (resp., left-to-right maximum) in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j > i (resp., a(j) < a(i) for all j < i).
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with k right-to-left maxima (resp., left-to-right maxima).
Number of permutations of length n avoiding simultaneously the patterns 213 and 231 with k right-to-left maxima (resp., right-to-left minima). (End)

Examples

			G.f. = 1 + x * (x + x^3 * (1 + x) + x^6 * (1 + x)^2 + x^10 * (1 + x)^3 + ...). - _Michael Somos_, Aug 20 2006
The triangle T(n, k) begins:
n\k  0 1 2  3  4   5   6  7  8 9 10 ...
0:   1
1:   0 1
2:   0 1 1
3:   0 1 2  1
4:   0 1 3  3  1
5:   0 1 4  6  4   1
6:   0 1 5 10 10   5   1
7:   0 1 6 15 20  15   6  1
8:   0 1 7 21 35  35  21  7  1
9:   0 1 8 28 56  70  56 28  8 1
10:  0 1 9 36 84 126 126 84 36 9  1
... reformatted _Wolfdieter Lang_, Jul 31 2017
From _Paul Weisenhorn_, Feb 09 2011: (Start)
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+c = 18 with (r+1)=6 summands: (5+5+4+2+1+1), (5+5+3+3+1+1), (5+4+4+3+1+1), (5+5+3+2+2+1), (5+4+4+2+2+1), (5+4+3+3+2+1).
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+(c-1) = 17 with r=5 summands: (5+5+4+2+1), (5+5+3+3+1), (5+5+3+2+2), (5+4+4+3+1), (5+4+4+2+2), (5+4+3+3+2).  (End)
From _James East_, Apr 11 2014: (Start)
a(0,0)=1 since there is a unique (order-preserving) function {}->{}.
a(m,0)=0 for m>0 since there is no function from a nonempty set to the empty set.
a(3,2)=4 because there are four order-preserving functions {1,2,3}->{1,2}: these are [1,1,1], [2,2,2], [1,1,2], [1,2,2]. Here f=[a,b,c] denotes the function defined by f(1)=a, f(2)=b, f(3)=c.
a(2,3)=6 because there are six order-preserving functions {1,2}->{1,2,3}: these are [1,1], [1,2], [1,3], [2,2], [2,3], [3,3].
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Part 1, Section 7.2.1.3, 2011.

Crossrefs

Case m=0 of the polynomials defined in A278073.
Cf. A000012 (diagonal), A011782 (row sums), A088218 (central terms).
The terms just left of center in odd-indexed rows are A001791, even A002054.
The odd-indexed rows are A034871.
Row sums without the center are A058622.
The unordered version is A072233, without zeros A008284.
Right half without center has row sums A027306(n-1).
Right half with center has row sums A116406(n).
Left half without center has row sums A294175(n-1).
Left half with center has row sums A058622(n-1).
A025047 counts alternating compositions.
A098124 counts balanced compositions, unordered A047993.
A106356 counts compositions by number of maximal anti-runs.
A344651 counts partitions by sum and alternating sum.
A345197 counts compositions by sum, length, and alternating sum.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, May 25 2014
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else
    add(T(k-1,n-i), i=1..n-k+1) fi end:
    A097805 := (n,k) -> T(k,n):
    for n from 0 to 12 do seq(A097805(n,k), k=0..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 1);  # Peter Luschny, Oct 07 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 03 2014, after Paul Weisenhorn *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jan 23 2022 *)
  • PARI
    {a(n) = my(m); if( n<2, n==0, n--; m = (sqrtint(8*n + 1) - 1)\2; binomial(m-1, n - m*(m + 1)/2))}; /* Michael Somos, Aug 20 2006 */
    
  • PARI
    T(n,k) = if (k==0, 0^n, binomial(n-1, k-1)); \\ Michel Marcus, May 06 2022
    
  • PARI
    row(n) = vector(n+1, k, k--; if (k==0, 0^n, binomial(n-1, k-1))); \\ Michel Marcus, May 06 2022
    
  • Python
    from math import comb
    def T(n, k): return comb(n-1, k-1) if k != 0 else k**n  # Peter Luschny, May 06 2022
  • Sage
    # Illustrates a basic partition formula, is not efficient as a program for large n.
    def A097805_row(n):
        r = []
        for k in (0..n):
            s = 0
            for q in Partitions(n, max_part=k, inner=[k]):
                s += mul(binomial(q[j],q[j+1]) for j in range(len(q)-1))
            r.append(s)
        return r
    [A097805_row(n) for n in (0..9)] # Peter Luschny, Jul 13 2015
    

Formula

Number triangle T(n, k) defined by T(n,k) = Sum_{j=0..n} binomial(n, j)*if(k<=j, (-1)^(j-k), 0).
T(r,c) = binomial(r-1,c-1), 0 <= c <= r. - Paul Weisenhorn, Feb 09 2011
G.f.: (-1+x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015
a(0,0) = 1, a(n,k) = binomial(n-1,n-k) = binomial(n-1,k-1) Juergen Will, Jan 04 2016
G.f.: (x^1 + x^2 + x^3 + ...)^k = (x/(1-x))^k. - Juergen Will, Jan 04 2016
From Tom Copeland, Nov 15 2016: (Start)
E.g.f.: 1 + x*[e^((x+1)t)-1]/(x+1).
This padded Pascal matrix with the odd columns negated is NpdP = M*S = S^(-1)*M^(-1) = S^(-1)*M, where M(n,k) = (-1)^n A130595(n,k), the inverse Pascal matrix with the odd rows negated, S is the summation matrix A000012, the lower triangular matrix with all elements unity, and S^(-1) = A167374, a finite difference matrix. NpdP is self-inverse, i.e., (M*S)^2 = the identity matrix, and has the e.g.f. 1 - x*[e^((1-x)t)-1]/(1-x).
M = NpdP*S^(-1) follows from the well-known recursion property of the Pascal matrix, implying NpdP = M*S.
The self-inverse property of -NpdP is implied by the self-inverse relation of its embedded signed Pascal submatrix M (cf. A130595). Also see A118800 for another proof.
Let P^(-1) be A130595, the inverse Pascal matrix. Then T = A200139*P^(-1) and T^(-1) = padded P^(-1) = P*A097808*P^(-1). (End)
The center (n>0) is T(2n+1,n+1) = A000984(n) = 2*A001700(n-1) = 2*A088218(n) = A126869(2n) = 2*A138364(2n-1). - Gus Wiseman, Jan 25 2022

Extensions

Corrected by Philippe Deléham, Oct 05 2005
New name using classical terminology by Peter Luschny, Feb 05 2019

A000346 a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).

Original entry on oeis.org

1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0

Keywords

Comments

Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - David Callan, Jul 14 2006
Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - Paul Barry, Jan 21 2007
Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - Emanuele Munarini, Mar 16 2011
From Gus Wiseman, Jul 19 2021: (Start)
For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:
(6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)
(2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)
(4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)
(5,1) (2,1,3) (1,3,1,1)
(2,2,2) (2,1,2,1)
(3,1,2) (3,1,1,1)
(3,2,1)
(4,1,1)
(End)

Examples

			G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
		

References

  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.
Bisection of A058622 and (possibly) A007008.
Even bisection of A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by A000302.
- The k <= 0 case is counted by A000302.
- The k != 0 case is counted by A000346 (this sequence).
- The k = 0 case is counted by A001700 or A088218.
- The k < 0 case is counted by A008549.
- The k >= 0 case is counted by A114121.
A011782 counts compositions.
A086543 counts partitions with nonzero alternating sum (bisection: A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
  • Maple
    seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
  • Mathematica
    Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
    a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
  • Maxima
    makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
    

Formula

G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.
Convolution of Catalan numbers and powers of 4.
Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...
a(n) = A045621(2n+1) = (1/2)*A068551(n+1).
a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - Paul Barry, Nov 13 2004
a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - Paul Barry, Jan 21 2007
Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - Vladimir Kruchinin, Aug 10 2010
D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - Emanuele Munarini, Mar 16 2011
E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).
This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - Wolfdieter Lang, Jan 16 2012
a(n) = Sum_{0<=iMircea Merca, Apr 05 2012
A000346 = A004171 - A001700. See A032443 for the sum. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - Michael Somos, Jan 25 2014
REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - Michael Somos, Jan 25 2014
Convolution square is A038806. - Michael Somos, Jan 25 2014
BINOMIAL transform of A055217(n-1) is a(n-1). - Michael Somos, Jan 25 2014
(n+1) * a(n) = A033504(n). - Michael Somos, Jan 25 2014
Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - Fung Lam, Mar 21 2014
Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - Fung Lam, Mar 21 2014
a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - Wolfdieter Lang, May 22 2015
a(n) = A000302(n) + A008549(n). - Gus Wiseman, Jul 19 2021
a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - Fabio Visonà, May 04 2022
a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - Peter Luschny, Nov 29 2023

Extensions

Corrected by Christian G. Bower

A008549 Number of ways of choosing at most n-1 items from a set of size 2*n+1.

Original entry on oeis.org

0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0

Keywords

Comments

Area under Dyck excursions (paths ending in 0): a(n) is the sum of the areas under all Dyck excursions of length 2*n (nonnegative walks beginning and ending in 0 with jumps -1,+1).
Number of inversions in all 321-avoiding permutations of [n+1]. Example: a(2)=6 because the 321-avoiding permutations of [3], namely 123,132,312,213,231, have 0, 1, 2, 1, 2 inversions, respectively. - Emeric Deutsch, Jul 28 2003
Convolution of A001791 and A000984. - Paul Barry, Feb 16 2005
a(n) = total semilength of "longest Dyck subpath" starting at an upstep U taken over all upsteps in all Dyck paths of semilength n. - David Callan, Jul 25 2008
[1,6,29,130,562,2380,...] is convolution of A001700 with itself. - Philippe Deléham, May 19 2009
From Ran Pan, Feb 04 2016: (Start)
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x to the right. This is related to paired pattern P_2 in Pan and Remmel's link and more details can be found in Section 3.2 in the link.
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) horizontally cross the diagonal y = x. This is related to paired pattern P_3 in Pan and Remmel's link and more details can be found in Section 3.3 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x. This is related to paired pattern P_2 and P_4 in Pan and Remmel's link and more details can be found in Section 4.2 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) cross the diagonal y = x. This is related to paired pattern P_3 and P_4 in Pan and Remmel's link and more details can be found in Section 4.3 in the link. (End)
From Gus Wiseman, Jul 17 2021: (Start)
Also the number of integer compositions of 2*(n+1) with alternating sum < 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 29 compositions of 8 are:
(1,7) (1,5,2) (1,1,1,5) (1,1,1,4,1) (1,1,1,1,1,3)
(2,6) (1,6,1) (1,1,2,4) (1,2,1,3,1) (1,1,1,2,1,2)
(3,5) (2,5,1) (1,2,1,4) (1,3,1,2,1) (1,1,1,3,1,1)
(1,2,2,3) (1,4,1,1,1) (1,2,1,1,1,2)
(1,3,1,3) (1,2,1,2,1,1)
(1,3,2,2) (1,3,1,1,1,1)
(1,4,1,2)
(1,4,2,1)
(1,5,1,1)
(2,1,1,4)
(2,2,1,3)
(2,3,1,2)
(2,4,1,1)
Also the number of integer compositions of 2*(n+1) with reverse-alternating sum < 0. For a bijection, keep the odd-length compositions and reverse the even-length ones.
Also the number of 2*(n+1)-digit binary numbers with more 0's than 1's. For example, the a(2) = 6 binary numbers are: 100000, 100001, 100010, 100100, 101000, 110000; or in decimal: 32, 33, 34, 36, 40, 48.
(End)

Examples

			a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.

Crossrefs

Odd bisection of A294175 (even is A000346).
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is A000302.
- The weak (k <= 0) version is (also) A000302.
- The k = 0 version is A001700 or A088218.
- The reverse-alternating version is also A008549 (this sequence).
- These compositions are ranked by A053754 /\ A345919.
- The complement (k >= 0) is counted by A114121.
- The case of reversed integer partitions is A344743(n+1).
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
  • Mathematica
    Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
    a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
    
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A008549(n):
        return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017

Formula

a(n) = 4^n - C(2*n+1, n).
a(n) = Sum_{k=1..n} Catalan(k)*4^(n-k): convolution of Catalan numbers and powers of 4.
G.f.: x*c(x)^2/(1 - 4*x), c(x) = g.f. of Catalan numbers. - Wolfdieter Lang
Note Sum_{k=0..2*n+1} binomial(2*n+1, k) = 2^(2n+1). Therefore, by the symmetry of Pascal's triangle, Sum_{k=0..n} binomial(2*n+1, k) = 2^(2*n) = 4^n. This explains why the following two expressions for a(n) are equal: Sum_{k=0..n-1} binomial(2*n+1, k) = 4^n - binomial(2*n+1, n). - Dan Velleman
G.f.: (2*x^2 - 1 + sqrt(1 - 4*x^2))/(2*(1 + 2*x)*(2*x - 1)*x^3).
a(n) = Sum_{k=0..n} C(2*k, k)*C(2*(n-k), n-k-1). - Paul Barry, Feb 16 2005
Second binomial transform of 2^n - C(n, floor(n/2)) = A045621(n). - Paul Barry, Jan 13 2006
a(n) = Sum_{0 < i <= k < n} binomial(n, k+i)*binomial(n, k-i). - Mircea Merca, Apr 05 2012
D-finite with recurrence (n+1)*a(n) + 2*(-4*n-1)*a(n-1) + 8*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n > -5. - Michael Somos, Jan 25 2014
Convolution square is A045894. - Michael Somos, Jan 25 2014
HANKEL transform is [0, -1, 2, -3, 4, -5, ...]. - Michael Somos, Jan 25 2014
BINOMIAL transform of [0, 0, 1, 3, 11, 35,...] (A109196) is [0, 0, 1, 6, 29, 130, ...]. - Michael Somos, Jan 25 2014
(n+1) * a(n) = A153338(n+1). - Michael Somos, Jan 25 2014
a(n) = Sum_{m = n+2..2*n+1} binomial(2*n+1,m), n >= 0. - Wolfdieter Lang, May 22 2015
E.g.f.: (exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 30 2016

Extensions

Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000

A344607 Number of integer partitions of n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 15, 16, 27, 29, 48, 52, 81, 90, 135, 151, 220, 248, 352, 400, 553, 632, 859, 985, 1313, 1512, 1986, 2291, 2969, 3431, 4394, 5084, 6439, 7456, 9357, 10836, 13479, 15613, 19273, 22316, 27353, 31659, 38558, 44601, 53998, 62416, 75168
Offset: 0

Author

Gus Wiseman, May 29 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of n with alternating sum >= 0.
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of integer partitions of n whose parts are all even or whose greatest part is odd.
All integer partitions have alternating sum >= 0, so the non-reversed version is A000041.
Is this sequence weakly increasing? In particular, is A344611(n) <= A160786(n)?

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (321)     (421)      (422)
                                     (411)     (511)      (431)
                                     (2211)    (22111)    (521)
                                     (21111)   (31111)    (611)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (32111)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-reversed version is A000041.
The opposite version (rev-alt sum <= 0) is A027187, ranked by A028260.
The strict case for n > 0 is A067659 (even bisection: A344650).
The ordered version appears to be A116406 (even bisection: A114121).
The odd bisection is A160786.
The complement is counted by A344608.
The Heinz numbers of these partitions are A344609 (complement: A119899).
The even bisection is A344611.
A000070 counts partitions with alternating sum 1 (reversed: A000004).
A000097 counts partitions with alternating sum 2 (reversed: A120452).
A035363 counts partitions with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A316524 is the alternating sum of prime indices of n (reversed: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30}]

Formula

a(n) + A344608(n) = A000041(n).
a(2n+1) = A160786(n).

A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843
Offset: 0

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409.
Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008
From Gus Wiseman, Jun 20 2021: (Start)
Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are:
() (1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (212)
(1111) (221)
(311)
(1121)
(2111)
(11111)
(End)
From J. Stauduhar, Jan 14 2022: (Start)
Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are:
1
1 1
1 2
1 3 3
1 4 6
...
The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence.
(End)

Crossrefs

The alternating sum = 0 case is A001700 or A088218.
The alternating sum > 0 case appears to be A027306.
The bisections are A032443 (odd) and A114121 (even).
The alternating sum <= 0 version is A058622.
The alternating sum < 0 version is A294175.
The restriction to reversed partitions is A344607.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344616 lists the alternating sums of partitions by Heinz number.

Programs

  • Mathematica
    CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 16 2012 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15}] (* Gus Wiseman, Jun 20 2021 *)

Formula

a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007
Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016
a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021

A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021

Examples

			Triangle begins:
   1
   1
   1   1
   2   1
   2   2   1
   4   2   1
   3   5   2   1
   7   5   2   1
   5   9   5   2   1
  12  10   5   2   1
   7  17  10   5   2   1
  19  19  10   5   2   1
  11  28  20  10   5   2   1
  30  33  20  10   5   2   1
  15  47  35  20  10   5   2   1
  45  57  36  20  10   5   2   1
  22  73  62  36  20  10   5   2   1
  67  92  64  36  20  10   5   2   1
  30 114 102  65  36  20  10   5   2   1
  97 147 107  65  36  20  10   5   2   1
Row n = 10 counts the following partitions (A = 10):
  (55)          (64)         (73)       (82)     (91)   (A)
  (3322)        (442)        (433)      (622)    (811)
  (4411)        (541)        (532)      (721)
  (222211)      (3331)       (631)      (7111)
  (331111)      (4222)       (5221)     (61111)
  (22111111)    (4321)       (6211)
  (1111111111)  (5311)       (42211)
                (22222)      (52111)
                (32221)      (511111)
                (33211)      (4111111)
                (43111)
                (322111)
                (421111)
                (2221111)
                (3211111)
                (31111111)
                (211111111)
The conjugate version is:
  (A)      (55)      (3331)     (331111)    (31111111)   (1111111111)
  (64)     (73)      (5311)     (511111)    (211111111)
  (82)     (91)      (7111)     (3211111)
  (442)    (433)     (33211)    (4111111)
  (622)    (532)     (43111)    (22111111)
  (4222)   (541)     (52111)
  (22222)  (631)     (61111)
           (721)     (322111)
           (811)     (421111)
           (3322)    (2221111)
           (4321)
           (4411)
           (5221)
           (6211)
           (32221)
           (42211)
           (222211)
		

Crossrefs

This is A103919 with all zeros removed.
The strict version is A152146 interleaved with A152157.
The rows are those of A239830 interleaved with those of A239829.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with rev-alternating sum <= 0, ranked by A028260.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with rev-alternating sum >= 0, ranked by A344609.
A344608 counts partitions with rev-alternating sum < 0, ranked by A119899.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
A346697 gives the sum of odd-indexed prime indices (reverse: A346699).
A346702 represents the odd bisection of compositions, sums A209281.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

A058622 a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

0, 1, 1, 4, 5, 16, 22, 64, 93, 256, 386, 1024, 1586, 4096, 6476, 16384, 26333, 65536, 106762, 262144, 431910, 1048576, 1744436, 4194304, 7036530, 16777216, 28354132, 67108864, 114159428, 268435456, 459312152, 1073741824, 1846943453
Offset: 0

Author

Yong Kong (ykong(AT)curagen.com), Dec 29 2000

Keywords

Comments

a(n) is the number of n-digit binary sequences that have more 1's than 0's. - Geoffrey Critzer, Jul 16 2009
Maps to the number of walks that end above 0 on the number line with steps being 1 or -1. - Benjamin Phillabaum, Mar 06 2011
Chris Godsil observes that a(n) is the independence number of the (n+1)-folded cube graph; proof is by a Cvetkovic's eigenvalue bound to establish an upper bound and a direct construction of the independent set by looking at vertices at an odd (resp., even) distance from a fixed vertex when n is odd (resp., even). - Stan Wagon, Jan 29 2013
Also the number of subsets of {1,2,...,n} that contain more odd than even numbers. For example, for n=4, a(4)=5 and the 5 subsets are {1}, {3}, {1,3}, {1,2,3}, {1,3,4}. See A014495 when same number of even and odd numbers. - Enrique Navarrete, Feb 10 2018
Also half the number of length-n binary sequences with a different number of zeros than ones. This is also the number of integer compositions of n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Also the number of integer compositions of n+1 with alternating sum <= 0, ranked by A345915 (reverse: A345916). - Gus Wiseman, Jul 19 2021

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 16*x^5 + 22*x^6 + 64*x^7 + 93*x^8 + ...
From _Gus Wiseman_, Jul 19 2021: (Start)
The a(1) = 1 through a(5) = 16 compositions with nonzero alternating sum:
  (1)  (2)  (3)      (4)      (5)
            (1,2)    (1,3)    (1,4)
            (2,1)    (3,1)    (2,3)
            (1,1,1)  (1,1,2)  (3,2)
                     (2,1,1)  (4,1)
                              (1,1,3)
                              (1,2,2)
                              (1,3,1)
                              (2,1,2)
                              (2,2,1)
                              (3,1,1)
                              (1,1,1,2)
                              (1,1,2,1)
                              (1,2,1,1)
                              (2,1,1,1)
                              (1,1,1,1,1)
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.7)

Crossrefs

The odd bisection is A000302.
The even bisection is A000346.
The following relate to compositions with nonzero alternating sum:
- The complement is counted by A001700 or A138364.
- The version for alternating sum > 0 is A027306.
- The unordered version is A086543 (even bisection: A182616).
- The version for alternating sum < 0 is A294175.
- These compositions are ranked by A345921.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Magma
    [(2^n -(1+(-1)^n)*Binomial(n, Floor(n/2))/2)/2: n in [0..40]]; // G. C. Greubel, Aug 08 2022
    
  • Mathematica
    Table[Sum[Binomial[n, Floor[n/2 + i]], {i, 1, n}], {n, 0, 32}] (* Geoffrey Critzer, Jul 16 2009 *)
    a[n_] := If[n < 0, 0, (2^n - Boole[EvenQ @ n] Binomial[n, Quotient[n, 2]])/2]; (* Michael Somos, Nov 22 2014 *)
    a[n_] := If[n < 0, 0, n! SeriesCoefficient[(Exp[2 x] - BesselI[0, 2 x])/2, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
    Table[2^(n - 1) - (1 + (-1)^n) Binomial[n, n/2]/4, {n, 0, 40}] (* Eric W. Weisstein, Mar 21 2018 *)
    CoefficientList[Series[2 x/((1-2x)(1 + 2x + Sqrt[(1+2x)(1-2x)])), {x, 0, 40}], x] (* Eric W. Weisstein, Mar 21 2018 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]!=0&]],{n,0,15}] (* Gus Wiseman, Jul 19 2021 *)
  • PARI
    a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n\2); \\ Michel Marcus, Dec 30 2015
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))))) \\ Altug Alkan, Dec 30 2015
    
  • Python
    from math import comb
    def A058622(n): return (1<>1)>>1) if n else 0 # Chai Wah Wu, Aug 25 2025
  • SageMath
    [(2^n - binomial(n, n//2)*((n+1)%2))/2 for n in (0..40)] # G. C. Greubel, Aug 08 2022
    

Formula

a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n, i).
G.f.: 2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))). - Vladeta Jovovic, Apr 27 2003
E.g.f: (e^(2x)-I_0(2x))/2 where I_n is the Modified Bessel Function. - Benjamin Phillabaum, Mar 06 2011
Logarithmic derivative of the g.f. of A210736 is a(n+1). - Michael Somos, Nov 22 2014
Even index: a(2n) = 2^(n-1) - A088218(n). Odd index: a(2n+1) = 2^(2n). - Gus Wiseman, Jul 19 2021
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +4*(-n+1)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 23 2021
a(n) = 2^n-A027306(n). - R. J. Mathar, Sep 23 2021
A027306(n) - a(n) = A126869(n). - R. J. Mathar, Sep 23 2021

A345197 Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Author

Gus Wiseman, Jul 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The matrices for n = 1..7:
  1   0 1   0 0 1   0 0 0 1   0 0 0 0 1   0 0 0 0 0 1   0 0 0 0 0 0 1
      1 0   1 1 0   1 1 1 0   1 1 1 1 0   1 1 1 1 1 0   1 1 1 1 1 1 0
            0 1 0   0 1 2 0   0 1 2 3 0   0 1 2 3 4 0   0 1 2 3 4 5 0
                    0 1 0 0   0 2 2 0 0   0 3 4 3 0 0   0 4 6 6 4 0 0
                              0 0 1 0 0   0 0 2 3 0 0   0 0 3 6 6 0 0
                                          0 0 1 0 0 0   0 0 3 3 0 0 0
                                                        0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
           i=-3:        i=-1:          i=1:            i=3:        i=5:
        -----------------------------------------------------------------
   k=1: |    0            0             0               0          (5)
   k=2: |   (14)         (23)          (32)            (41)         0
   k=3: |    0          (131)       (221)(122)   (311)(113)(212)    0
   k=4: |    0       (1211)(1112)  (2111)(1121)         0           0
   k=5: |    0            0          (11111)            0           0
		

Crossrefs

The number of nonzero terms in each matrix appears to be A000096.
The number of zeros in each matrix appears to be A000124.
Row sums and column sums both appear to be A007318 (Pascal's triangle).
The matrix sums are A131577.
Antidiagonal sums appear to be A163493.
The reverse-alternating version is also A345197 (this sequence).
Antidiagonals are A345907.
Traces are A345908.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Other tetrangles: A318393, A318816, A320808, A321912.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]

A053754 If k is in the sequence then 2*k and 2*k+1 are not (and 0 is in the sequence); when written in binary k has an even number of bits (0 has 0 digits).

Original entry on oeis.org

0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1

Author

Henry Bottomley, Apr 06 2000

Keywords

Comments

Runs of successive terms with same number of bits have length twice powers of 4 (A081294). [Clarified by Michel Marcus, Oct 21 2020]
The sequence A081294 counts compositions of even numbers - Gus Wiseman, Aug 12 2021
A031443 is a subsequence; A179888 is the intersection of this sequence and A032925. - Reinhard Zumkeller, Jul 31 2010
The lower and upper asymptotic densities of this sequence are 1/3 and 2/3, respectively. - Amiram Eldar, Feb 01 2021
From Gus Wiseman, Aug 10 2021: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) has even sum. The terms and corresponding compositions begin:
0: () 2: (2) 8: (4)
3: (1,1) 9: (3,1)
10: (2,2)
11: (2,1,1)
12: (1,3)
13: (1,2,1)
14: (1,1,2)
15: (1,1,1,1)
The following pertain to compositions in standard order: A000120, A029837, A070939, A066099, A124767.
(End)

Crossrefs

Positions of even terms in A029837 with offset 0.
The complement (the odd version) is A053738, counted by A000302.
The version for Heinz numbers of partitions is A300061, counted by A058696.

Programs

  • Haskell
    a053754 n = a053754_list !! (n-1)
    a053754_list = 0 : filter (even . a070939) [1..]
    -- Reinhard Zumkeller, Apr 18 2015
    
  • Mathematica
    Select[Range[0, 150], EvenQ @ IntegerLength[#, 2] &] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=2, nn, my(k=va[n-1]+1); while (#select(x->(x==k\2), va), k++); va[n] = k;); va;} \\ Michel Marcus, Oct 20 2020
    
  • PARI
    a(n) = n-1 + (1<Kevin Ryde, Apr 30 2021

Extensions

Offset corrected by Reinhard Zumkeller, Jul 30 2010

A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184
Offset: 0

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of 2n with alternating sum >= 0.
The reverse-alternating sum of a partition is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of partitions of 2n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of partitions of 2n whose parts are all even or whose greatest part is odd.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)   (4)     (6)       (8)
      (11)  (22)    (33)      (44)
            (211)   (222)     (332)
            (1111)  (321)     (422)
                    (411)     (431)
                    (2211)    (521)
                    (21111)   (611)
                    (111111)  (2222)
                              (3311)
                              (22211)
                              (32111)
                              (41111)
                              (221111)
                              (2111111)
                              (11111111)
		

Crossrefs

The non-reversed version is A058696 (partitions of 2n).
The ordered version appears to be A114121.
Odd bisection of A344607.
Row sums of A344610.
The strict case is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344612 counts partitions by sum and rev-alt sum (strict: A344739).
A344618 gives reverse-alternating sums of standard compositions.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30,2}]

Formula

Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ...

Extensions

More terms from Bert Dobbelaere, Jun 12 2021
Showing 1-10 of 42 results. Next