cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A265667 Permutation of nonnegative integers: a(n) = n + floor(n/3)*(-1)^(n mod 3).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, 13, 26, 28, 15, 30, 32, 17, 34, 36, 19, 38, 40, 21, 42, 44, 23, 46, 48, 25, 50, 52, 27, 54, 56, 29, 58, 60, 31, 62, 64, 33, 66, 68, 35, 70, 72, 37, 74, 76, 39, 78, 80, 41, 82, 84, 43, 86, 88, 45
Offset: 0

Views

Author

Bruno Berselli, Dec 12 2015 - based on an idea by Paul Curtz

Keywords

Comments

The inverse permutation is given by P(n) = A006368(n-1) + 1, for n >= 1, and P(0) = 0. - Wolfdieter Lang, Sep 21 2021
This permutation is given by A006369(n-1) + 1, with A006369(-1) = -1. Observed by Kevin Ryde. - Wolfdieter Lang, Sep 22 2021

Examples

			-------------------------------------------------------------------------
0, 1, 2, 3,  4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+  +  +  +   +  +  +   +   +   +   +   +   +   +   +   +   +   +   +
0, 0, 0, 1, -1, 1, 2, -2,  2,  3, -3,  3,  4, -4,  4,  5, -5,  5,  6, ...
-------------------------------------------------------------------------
0, 1, 2, 4,  3, 6, 8,  5, 10, 12,  7, 14, 16,  9, 18, 20, 11, 22, 24, ...
-------------------------------------------------------------------------
		

Crossrefs

Cf. A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf. A265888: n+floor(n/4)*(-1)^(n mod 4).
Cf. A265734: n+floor(n/5)*(-1)^(n mod 5).

Programs

  • Magma
    [n+Floor(n/3)*(-1)^(n mod 3): n in [0..70]];
  • Mathematica
    Table[n + Floor[n/3] (-1)^Mod[n, 3], {n, 0, 70}]
  • Sage
    [n+floor(n/3)*(-1)^mod(n,3) for n in (0..70)]
    

Formula

G.f.: x*(1 + 2*x + 4*x^2 + x^3 + 2*x^4) / ((1 - x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-3) - a(n-6).
a(3*k) = 4*k;
a(3*k+1) = 2*k+1, hence a(3*k+1) = a(3*k)/2 + 1;
a(3*k+2) = 4*k+2, hence a(3*k+2) = 2*a(3*k+1) = a(3*k) + 2.
Sum_{i=0..n} a(i) = A008738(A032793(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + log(2)/4. - Amiram Eldar, Mar 30 2023

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A032794 Positive integers of the form n(n+1)(n+2)(n+3)(n+4)/(n+(n+1)+(n+2)+(n+3)+(n+4)) that are a multiple of n.

Original entry on oeis.org

8, 36, 224, 756, 1232, 2808, 5544, 7488, 12852, 20672, 25704, 38456, 55440, 65780, 90720, 122148, 140616, 183744, 236096, 266112, 334628, 415584, 461168, 563472, 681912, 747684, 893376, 1059380, 1150560, 1350440, 1575288, 1697696, 1963764, 2259936, 2419992
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • PARI
    Vec(4*x*(2 + 7*x + 47*x^2 + 125*x^3 + 91*x^4 + 206*x^5 + 164*x^6 + 52*x^7 + 47*x^8 + 9*x^9) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^40)) \\ Colin Barker, May 30 2019

Formula

From Colin Barker, May 30 2019: (Start)
G.f.: 4*x*(2 + 7*x + 47*x^2 + 125*x^3 + 91*x^4 + 206*x^5 + 164*x^6 + 52*x^7 + 47*x^8 + 9*x^9) / ((1 - x)^5*(1 + x + x^2)^4).
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)

Extensions

Edited and offset changed by Alois P. Heinz, May 29 2019

A023054 Simon Plouffe's conjectured extension of sequence A008368.

Original entry on oeis.org

1, 1, 3, 4, 7, 8, 13, 14, 20, 22, 29, 31, 40, 42, 52, 55, 66, 69, 82, 85, 99, 103, 118, 122, 139, 143, 161, 166, 185, 190, 211, 216, 238, 244, 267, 273, 298, 304, 330, 337, 364, 371, 400, 407, 437, 445, 476, 484, 517, 525, 559, 568, 603, 612, 649, 658, 696, 706, 745, 755
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 13*x^6 + 14*x^7 + 20*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 59}], x] (* Georg Fischer, Oct 13 2020 *)
  • PARI
    {a(n) = if( n%2, (n + 1) * (5*n + 7) + 8 * (n%6 == 3), (n + 2) * (5*n + 8) + 8 * (n%6 == 0) ) / 24}; /* Michael Somos, May 22 2014 */
    
  • PARI
    {a(n) = if( n<0, n = -3 - n); polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, May 22 2014 */

Formula

G.f.: (1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)).
Euler transform of length 5 sequence [ 1, 2, 1, 0, -1]. - Michael Somos, May 22 2014
a(-3 - n) = a(n). - Michael Somos, May 22 2014
a(2*n + 2) - a(2*n) = A032793(n + 2). a(2*n + 3) - a(2*n + 1) = A042706(n + 2). - Michael Somos, May 22 2014

A032795 Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.

Original entry on oeis.org

8, 18, 56, 126, 176, 312, 504, 624, 918, 1292, 1512, 2024, 2640, 2990, 3780, 4698, 5208, 6336, 7616, 8316, 9842, 11544, 12464, 14448, 16632, 17802, 20304, 23030, 24480, 27560, 30888, 32648, 36366, 40356, 42456, 46872, 51584, 54054, 59228
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) )); // G. C. Greubel, May 29 2019
    
  • Mathematica
    CoefficientList[Series[2*x*(4+5x+19x^2+23x^3+10x^4+11x^5+3x^6)/((1-x)^4*(1+x+x^2)^3), {x, 0, 39}], x] (* Georg Fischer, May 27 2019 *)
  • PARI
    Vec(2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4*(1+x+x^2)^3) + O(x^20)) \\ Felix Fröhlich, May 27 2019
    
  • Sage
    a=(2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 29 2019

Formula

a(n) = A032794(n)/A032793(n).
O.g.f.: 2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4* (1+x+x^2)^3). [Corrected by Georg Fischer, May 27 2019]

Extensions

Definition amended and offset changed by Georg Fischer, May 27 2019

A241013 Semiprimes congruent to {1, 2, 4} mod 5.

Original entry on oeis.org

4, 6, 9, 14, 21, 22, 26, 34, 39, 46, 49, 51, 57, 62, 69, 74, 77, 82, 86, 87, 91, 94, 106, 111, 119, 121, 122, 129, 134, 141, 142, 146, 159, 161, 166, 169, 177, 187, 194, 201, 202, 206, 209, 214, 217, 219, 221, 226, 237, 247, 249, 254, 259, 262, 267, 274, 287, 289
Offset: 1

Views

Author

K. D. Bajpai, Aug 07 2014

Keywords

Comments

Semiprimes in A032793.

Examples

			21 = 3 * 7 which is semiprime and 21 = 1 mod 5.
39 = 3 * 13 which is semiprime and 39 = 4 mod 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeOmega[#] == 2 && MemberQ[{1, 2, 4}, Mod[#, 5]] &](* Bajpai *)
    Select[Complement[Range[100], 5Range[20] - 2, 5Range[20]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Aug 07 2014 *)
  • PARI
    for(n=1,10^4,if(n!=Mod(0,5)&&n!=Mod(3,5),if(bigomega(n)==2,print1(n,", ")))) \\ Derek Orr, Aug 07 2014

A271779 a(n) = n^3 + 2*n^2 + 5*n + 11.

Original entry on oeis.org

11, 19, 37, 71, 127, 211, 329, 487, 691, 947, 1261, 1639, 2087, 2611, 3217, 3911, 4699, 5587, 6581, 7687, 8911, 10259, 11737, 13351, 15107, 17011, 19069, 21287, 23671, 26227, 28961, 31879, 34987, 38291, 41797, 45511, 49439, 53587, 57961, 62567, 67411, 72499
Offset: 0

Views

Author

Vincenzo Librandi, Apr 14 2016

Keywords

Crossrefs

Subsequence of A001651, A032793.

Programs

  • Magma
    [n^3+2*n^2+5*n+11: n in [0..50]];
    
  • Mathematica
    Table[n^3 + 2 n^2 + 5 n + 11, {n, 0, 50}]
  • PARI
    vector(50, n, n--; n^3+2*n^2+5*n+11) \\ Altug Alkan, Apr 14 2016

Formula

O.g.f.: (11 - 25*x + 27*x^2 - 7*x^3)/(1 - x)^4.
E.g.f.: (11 + 8*x + 5*x^2 + x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
Previous Showing 21-27 of 27 results.