A265667
Permutation of nonnegative integers: a(n) = n + floor(n/3)*(-1)^(n mod 3).
Original entry on oeis.org
0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, 13, 26, 28, 15, 30, 32, 17, 34, 36, 19, 38, 40, 21, 42, 44, 23, 46, 48, 25, 50, 52, 27, 54, 56, 29, 58, 60, 31, 62, 64, 33, 66, 68, 35, 70, 72, 37, 74, 76, 39, 78, 80, 41, 82, 84, 43, 86, 88, 45
Offset: 0
-------------------------------------------------------------------------
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+ + + + + + + + + + + + + + + + + + +
0, 0, 0, 1, -1, 1, 2, -2, 2, 3, -3, 3, 4, -4, 4, 5, -5, 5, 6, ...
-------------------------------------------------------------------------
0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, ...
-------------------------------------------------------------------------
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Peter Lynch and Michael Mackey, Parity and Partition of the Rational Numbers, arXiv:2205.00565 [math.NT], 2022. See set F p. 4.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
- Index entries for permutations of the positive (or nonnegative) integers.
Cf.
A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf.
A265888: n+floor(n/4)*(-1)^(n mod 4).
Cf.
A265734: n+floor(n/5)*(-1)^(n mod 5).
-
[n+Floor(n/3)*(-1)^(n mod 3): n in [0..70]];
-
Table[n + Floor[n/3] (-1)^Mod[n, 3], {n, 0, 70}]
-
[n+floor(n/3)*(-1)^mod(n,3) for n in (0..70)]
A202803
a(n) = n*(5*n+1).
Original entry on oeis.org
0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0
G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
-
List([0..50], n-> n*(5*n+1)); # G. C. Greubel, Jul 04 2019
-
[n*(5*n+1):n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
-
CoefficientList[Series[2x(3+2x)/(1-x)^3, {x, 0, 50}] ,x] (* Vincenzo Librandi, Aug 11 2014 *)
Table[5*n^2+n, {n,0,50}] (* G. C. Greubel, Jul 04 2019 *)
-
a(n)=n*(5*n+1) \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(5*n+1) for n in (0..50)] # G. C. Greubel, Jul 04 2019
A032794
Positive integers of the form n(n+1)(n+2)(n+3)(n+4)/(n+(n+1)+(n+2)+(n+3)+(n+4)) that are a multiple of n.
Original entry on oeis.org
8, 36, 224, 756, 1232, 2808, 5544, 7488, 12852, 20672, 25704, 38456, 55440, 65780, 90720, 122148, 140616, 183744, 236096, 266112, 334628, 415584, 461168, 563472, 681912, 747684, 893376, 1059380, 1150560, 1350440, 1575288, 1697696, 1963764, 2259936, 2419992
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
A023054
Simon Plouffe's conjectured extension of sequence A008368.
Original entry on oeis.org
1, 1, 3, 4, 7, 8, 13, 14, 20, 22, 29, 31, 40, 42, 52, 55, 66, 69, 82, 85, 99, 103, 118, 122, 139, 143, 161, 166, 185, 190, 211, 216, 238, 244, 267, 273, 298, 304, 330, 337, 364, 371, 400, 407, 437, 445, 476, 484, 517, 525, 559, 568, 603, 612, 649, 658, 696, 706, 745, 755
Offset: 0
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 13*x^6 + 14*x^7 + 20*x^8 + ...
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for linear recurrences with constant coefficients, signature (0,2,1,-1,-2,0,1).
-
CoefficientList[Series[(1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 59}], x] (* Georg Fischer, Oct 13 2020 *)
-
{a(n) = if( n%2, (n + 1) * (5*n + 7) + 8 * (n%6 == 3), (n + 2) * (5*n + 8) + 8 * (n%6 == 0) ) / 24}; /* Michael Somos, May 22 2014 */
-
{a(n) = if( n<0, n = -3 - n); polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, May 22 2014 */
A032795
Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.
Original entry on oeis.org
8, 18, 56, 126, 176, 312, 504, 624, 918, 1292, 1512, 2024, 2640, 2990, 3780, 4698, 5208, 6336, 7616, 8316, 9842, 11544, 12464, 14448, 16632, 17802, 20304, 23030, 24480, 27560, 30888, 32648, 36366, 40356, 42456, 46872, 51584, 54054, 59228
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) )); // G. C. Greubel, May 29 2019
-
CoefficientList[Series[2*x*(4+5x+19x^2+23x^3+10x^4+11x^5+3x^6)/((1-x)^4*(1+x+x^2)^3), {x, 0, 39}], x] (* Georg Fischer, May 27 2019 *)
-
Vec(2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4*(1+x+x^2)^3) + O(x^20)) \\ Felix Fröhlich, May 27 2019
-
a=(2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 29 2019
Definition amended and offset changed by
Georg Fischer, May 27 2019
A241013
Semiprimes congruent to {1, 2, 4} mod 5.
Original entry on oeis.org
4, 6, 9, 14, 21, 22, 26, 34, 39, 46, 49, 51, 57, 62, 69, 74, 77, 82, 86, 87, 91, 94, 106, 111, 119, 121, 122, 129, 134, 141, 142, 146, 159, 161, 166, 169, 177, 187, 194, 201, 202, 206, 209, 214, 217, 219, 221, 226, 237, 247, 249, 254, 259, 262, 267, 274, 287, 289
Offset: 1
21 = 3 * 7 which is semiprime and 21 = 1 mod 5.
39 = 3 * 13 which is semiprime and 39 = 4 mod 5.
-
Select[Range[500], PrimeOmega[#] == 2 && MemberQ[{1, 2, 4}, Mod[#, 5]] &](* Bajpai *)
Select[Complement[Range[100], 5Range[20] - 2, 5Range[20]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Aug 07 2014 *)
-
for(n=1,10^4,if(n!=Mod(0,5)&&n!=Mod(3,5),if(bigomega(n)==2,print1(n,", ")))) \\ Derek Orr, Aug 07 2014
A271779
a(n) = n^3 + 2*n^2 + 5*n + 11.
Original entry on oeis.org
11, 19, 37, 71, 127, 211, 329, 487, 691, 947, 1261, 1639, 2087, 2611, 3217, 3911, 4699, 5587, 6581, 7687, 8911, 10259, 11737, 13351, 15107, 17011, 19069, 21287, 23671, 26227, 28961, 31879, 34987, 38291, 41797, 45511, 49439, 53587, 57961, 62567, 67411, 72499
Offset: 0
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3, page 24.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n^3+2*n^2+5*n+11: n in [0..50]];
-
Table[n^3 + 2 n^2 + 5 n + 11, {n, 0, 50}]
-
vector(50, n, n--; n^3+2*n^2+5*n+11) \\ Altug Alkan, Apr 14 2016
Comments