cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A055212 Number of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 1, 1, 2, 3, 0, 4, 0, 4, 1, 1, 1, 6, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 7, 1, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 8, 0, 1, 3, 5, 1, 4, 0, 3, 1, 4, 0, 9, 0, 1, 3, 3, 1, 4, 0, 7, 3, 1, 0, 8, 1, 1, 1, 5, 0, 8, 1, 3, 1, 1, 1, 9, 0, 3, 3, 6, 0, 4, 0, 5, 4
Offset: 1

Views

Author

Leroy Quet, Jun 23 2000

Keywords

Comments

Trivially, there is only one run of three consecutive 0's. However, there are infinitely many runs of three consecutive 1's and they are at positions A056809(n), A086005(n), and A115393(n) for n >= 1. - Timothy L. Tiffin, Jun 21 2021

Examples

			a[20] = 3 because the composite divisors of 20 are 4, 10, 20.
		

Crossrefs

Complement of A083399.

Programs

Formula

a(n) = A033273(n) - 1.
a(n) = tau(n)-omega(n)-1, where tau=A000005 and omega=A001221. - Reinhard Zumkeller, Jun 13 2003
G.f.: -x/(1 - x) + Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 2 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Dec 07 2023

A055079 Smallest number with exactly n nonprime divisors.

Original entry on oeis.org

1, 4, 8, 12, 30, 24, 36, 48, 60, 72, 2048, 192, 120, 216, 180, 288, 240, 432, 576, 420, 360, 864, 1296, 900, 960, 1728, 720, 840, 1080, 3456, 9216, 1260, 1440, 6912, 34359738368, 1680, 2160, 10368, 2880, 15552, 15360, 3600, 4620, 2520, 4320, 31104
Offset: 1

Views

Author

Labos Elemer, Jun 13 2000

Keywords

Comments

a(n)<=2^n; see A057838 for the indices n where a(n)=2^n.

Examples

			a(5) = 30 because it is the first integer which has five nonprime divisors (1, 6, 10, 15 and 30; the divisors 2, 3 and 5 are prime).
a(35) = 2^35 = 34359738368.
a(71) = 2^71 = 2361183241434822606848.
a(191) = 2^191 = 3138550867693340381917894711603833208051177722232017256448.
		

Crossrefs

Programs

Formula

a(n)=Min{k; A000005(k)-A001221(k)=A033273(k)=n}

Extensions

More terms from Robert G. Wilson v, Nov 20 2000
Edited by Ray Chandler, Aug 12 2010

A319685 Number of distinct values obtained when arithmetic derivative (A003415) is applied to proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 9, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 2, 4, 2, 2, 2, 10, 1, 4, 4, 7, 1, 5, 1, 6, 5, 2, 1, 10, 1, 5, 2, 7, 1, 5, 2, 4, 4, 2, 2, 13
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Because for all d|n, dA003415(d) < A003415(n), it follows that the terms here are one less than in A319686.
Differs from A033273(n) = A000005(n) - A001221(n) at n = 1, 112, 156, 224, 280, 312, 336, 342, 380, 448, 468, 525, 560, 608, 624, 660, 672, 684, 756, 760, 780, 784, 840, 870, 896, 936, 984, 1008, ...

Examples

			The proper divisors of 112 are [1, 2, 4, 7, 8, 14, 16, 28, 56]. Applying arithmetic derivative A003415 to these, we obtain values [0, 1, 4, 1, 12, 9, 32, 32, 92], of which only 7 are distinct: 0, 1, 4, 9, 12, 32, and 92, thus a(112) = 7.
		

Crossrefs

One less than A319686.
Cf. A003415.
Cf. also A304793, A305611, A316555, A316556, A319695 for similarly constructed sequences.

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := CountDistinct[d /@ Most[Divisors[n]]]; Array[a, 100] (* Amiram Eldar, Apr 17 2024 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319685(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((dA003415(d)), mapput(m,s,s); k++)); (k); };

Formula

a(n) = A319686(n)-1.

A294894 Number of divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 3, 2, 4, 1, 6, 1, 6, 2, 2, 1, 9, 1, 2, 4, 6, 1, 5, 1, 4, 2, 5, 1, 10, 1, 2, 3, 4, 1, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 1, 4, 2, 2, 1, 10, 1, 4, 4, 6, 1, 5, 1, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, so only 1 is counted and a(25)=1.
		

Crossrefs

Cf. also A294884, A294904.
Differs from A033273 for the first time at n=25.

Programs

  • PARI
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A283991(n) = polisirreducible(ps(n));
    A294894(n) = sumdiv(n,d,(0==A283991(d)));

Formula

a(n) = Sum_{d|n} (1-A283991(d)).
a(n) + A294893(n) = A000005(n).
a(n) = 1 + A294892(n) - A283991(n).

A059992 Numbers with an increasing number of nonprime divisors.

Original entry on oeis.org

1, 4, 8, 12, 24, 36, 48, 60, 72, 120, 180, 240, 360, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 4320, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 30240, 45360, 50400, 55440, 75600, 83160, 110880, 151200, 166320, 221760, 277200, 332640
Offset: 1

Views

Author

Robert G. Wilson v, Mar 08 2001

Keywords

Comments

Positions of records in A033273.
From Michael De Vlieger, Jan 04 2025: (Start)
Conjecture: This sequence includes all highly composite numbers (from A002182) except 2 and 6, but there are other terms in this sequence (e.g., a(3) = 8, a(9) = 72) that are not highly composite.
Conjecture: a(n)/A007947(a(n)) is in A301414. (End)

Examples

			a(4)=12 because twelve has 4 nonprime divisors {1, 4, 6 and 12} whereas a(3)=8 has only 3; and twelve is the first number greater than eight which exhibits this property.
		

Crossrefs

Programs

  • Mathematica
    l = 0; Do[ c = Count[PrimeQ[ Divisors[n] ], False]; If[c > l, l = c; Print[n] ], {n, 1, 10^6} ]
  • PARI
    lista(nn) = {my(m=0, nb); for (n=1, nn, nb = sumdiv(n, d, !isprime(d)); if (nb > m, m = nb; print1(n, ", ")););} \\ Michel Marcus, Jul 16 2019

Extensions

Alternate description and b-file from Ray Chandler, Aug 07 2010

A087652 Product of the nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 32, 9, 10, 1, 288, 1, 14, 15, 512, 1, 972, 1, 800, 21, 22, 1, 55296, 25, 26, 243, 1568, 1, 27000, 1, 16384, 33, 34, 35, 1679616, 1, 38, 39, 256000, 1, 74088, 1, 3872, 6075, 46, 1, 42467328, 49, 12500, 51, 5408, 1, 1417176, 55, 702464, 57, 58
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2003

Keywords

Examples

			For n = 12: nonprime divisors = {4,6,12}: a(12) = 4*6*12 = 288.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^(DivisorSigma[0, n]/2) / Times @@ FactorInteger[n][[;;, 1]]; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (!isprime(d), p*=d)); p; \\ Michel Marcus, Aug 05 2017

Formula

a(n) = 1 if n = 1 or n is prime.
a(n) = n if n = 1 or n is semiprime (A001358).
From Wesley Ivan Hurt, Jun 08 2020: (Start)
a(n) = Product_{d|n, d nonprime} d.
If n is squarefree, then a(n) = n^(d(n)/2-1), where d(n) is the number of divisors of n (A000005). (End)
a(p^e) = p^((e^2+e-2)/2) for p prime, e > 0. - Bernard Schott, Jun 08 2020
a(n) = A007955(n)/A007947(n). - Amiram Eldar, Feb 01 2025

A081707 a(n) = tau(n) - bigomega(n) = A000005(n) - A001222(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 8, 2, 2, 2, 4, 1, 8, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 5, 1, 4, 5
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2003

Keywords

Comments

Number of divisors of n that are not positive powers of primes (cf. A000961). - Benoit Cloitre, May 03 2003; corrected Dec 16 2008 at the suggestion of Ray Chandler.
a(n) = 1 iff n is in A000961. - Robert Israel, Nov 23 2015
a(n) = 2 iff n is in A006881. - Altug Alkan, Nov 23 2015
a(n) = 3 iff n is in A054753. - Michel Marcus, Nov 24 2015

Examples

			After first statement in comment section, a(60) = 8 because we have: 1,6,10,12,15,20,30,60. The divisors 2,3,4,5 are excluded from the count. - _Geoffrey Critzer_, Nov 22 2015
		

Crossrefs

Cf. A033273(n) = tau(n) - omega(n) = A000005(n) - A001221(n).
Cf. A000961.

Programs

  • Maple
    seq(numtheory:-tau(n)-numtheory:-bigomega(n), n=1..300); # Robert Israel, Nov 23 2015
  • Mathematica
    Table[DivisorSigma[0, n] - PrimeOmega[n], {n, 1, 105}] (* Geoffrey Critzer, Nov 22 2015 *)
  • PARI
    first(m)=vector(m,n,numdiv(n) - bigomega(n)) \\ Anders Hellström, Nov 22 2015

A087802 a(n) = Sum_{d|n, d nonprime} mu(d), where mu = A008683.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2003

Keywords

Comments

A064372 and this sequence first differ at term 64: A064372(64)=2 and a(64)=1. - Rick L. Shepherd, Mar 07 2004

Examples

			Divisors of n=42: {1,2,3,6,7,14,21,42}, a(42) = mu(1) + mu(6) + mu(14) + mu(21) + mu(42) = 1+1+1+1-1 = 3.
		

Crossrefs

Cf. A001221, A008683 (mu), A023890, A033273. Different from A079553.

Programs

  • Mathematica
    Table[Total[MoebiusMu[#]&/@Select[Divisors[n],!PrimeQ[#]&]],{n,120}] (* Harvey P. Dale, Oct 14 2014 *)
  • PARI
    A087802(n) = sumdiv(n,d,if(!isprime(d),moebius(d)))

Formula

a(n) = if n=1 then 1, else A001221(n). - Vladeta Jovovic, Oct 17 2003

A327394 Number of stable divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 6, 4, 3, 4, 5, 2, 3, 3, 5, 2, 4, 2, 4, 6, 3, 2, 6, 3, 4, 4, 4, 2, 5, 4, 5, 3, 3, 2, 6, 2, 3, 4, 7, 3, 5, 2, 4, 4, 5, 2, 6, 2, 3, 6, 4, 4, 4, 2, 6, 5, 3, 2, 5, 4, 3, 3, 5, 2, 7, 4, 4, 4, 3, 4, 7, 2, 4, 6, 5, 2, 5, 2, 5, 6, 3, 2, 6, 2, 5, 3, 6, 2, 4, 3, 4, 4, 3, 4, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. Maximum stable divisor is A327393.

Examples

			The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 6.
		

Crossrefs

See link for additional cross-references.
Inverse Möbius transform of A378442.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Divisors[n],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]],{n,100}]
  • PARI
    A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018
    A327394(n) = sumdiv(n,d,A378442(d)); \\ Antti Karttunen, Nov 27 2024

Formula

a(n) = Sum_{d|n} A378442(d). - Antti Karttunen, Nov 27 2024

Extensions

More terms from Antti Karttunen, Nov 27 2024

A333748 Number of nonprime divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # <= Sqrt[n] && !PrimeQ[#] &], {n, 1, 100}]
    nmax = 100; CoefficientList[Series[Sum[Boole[!PrimeQ[k]] x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, (d^2<=n) && !isprime(d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} x^(A018252(k)^2) / (1 - x^A018252(k)).
Previous Showing 11-20 of 32 results. Next