cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 158 results. Next

A030998 Write n in base 7 and juxtapose.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6
Offset: 0

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-7 digits of n. - Jason Kimberley, Dec 07 2012
The base-7 Champernowne constant: it is normal in base 7. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), this sequence (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A007093.

Programs

  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,7)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[IntegerDigits[#,7]&/@Range[0,60]]  (* Harvey P. Dale, Mar 04 2011 *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 7] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A030998_gen(): return chain.from_iterable(digits(m, 7)[1:] for m in count(0))
    A030998_list = list(islice(A030998_gen(), 30)) # Chai Wah Wu, Jan 07 2022

A244677 The spiral of Champernowne, read along the East ray.

Original entry on oeis.org

1, 2, 0, 1, 1, 4, 8, 9, 1, 1, 6, 8, 2, 4, 8, 3, 6, 0, 4, 9, 5, 6, 6, 1, 7, 4, 1, 9, 0, 1, 1, 1, 7, 1, 4, 7, 6, 1, 6, 6, 7, 1, 0, 9, 0, 2, 3, 5, 5, 2, 7, 4, 2, 3, 1, 6, 1, 3, 5, 1, 2, 3, 0, 9, 5, 4, 5, 1, 0, 4, 1, 6, 7, 5, 6, 4, 6, 6, 3, 5, 7, 6, 9, 0, 0, 7, 6, 8, 5, 8, 3, 9, 2, 8, 0, 3, 1, 9, 8, 0, 0, 3, 0, 4, 1
Offset: 1

Views

Author

Robert G. Wilson v, Jul 04 2014

Keywords

Comments

Inspired by Stanislaw Ulam's spiral, circa 1963.

Examples

			The beginning of the infinite spiral of David Gawen Champernowne:
.
  7--1--9--6--1--8--6--1--7--6--1--6--6--1--5--6--1--4--6--1--3  .
  |                                                           |  |
  0  1--4--4--1--3--4--1--2--4--1--1--4--1--0--4--1--9--3--1  6  .
  |  |                                                     |  |  |
  1  4  2--1--1--2--1--0--2--1--9--1--1--8--1--1--7--1--1  8  1  .
  |  |  |                                               |  |  |  |
  7  5  2  0--1--1--0--1--0--0--1--9--9--8--9--7--9--6  6  3  2  9
  |  |  |  |                                         |  |  |  |  |
  1  1  1  2  7--7--6--7--5--7--4--7--3--7--2--7--1  9  1  1  6  8
  |  |  |  |  |                                   |  |  |  |  |  |
  1  4  2  1  7  5--5--4--5--3--5--2--5--1--5--0  7  5  1  7  1  1
  |  |  |  |  |  |                             |  |  |  |  |  |  |
  7  6  3  0  8  5  7--3--6--3--5--3--4--3--3  5  0  9  5  3  1  8
  |  |  |  |  |  |  |                       |  |  |  |  |  |  |  |
  2  1  1  3  7  6  3  3--2--2--2--1--2--0  3  9  7  4  1  1  6  8
  |  |  |  |  |  |  |  |                 |  |  |  |  |  |  |  |  |
  1  4  2  1  9  5  8  2  3--1--2--1--1  2  2  4  9  9  1  6  1  1
  |  |  |  |  |  |  |  |  |           |  |  |  |  |  |  |  |  |  |
  7  7  4  0  8  7  3  4  1  5--4--3  1  9  3  8  6  3  4  3  0  7
  |  |  |  |  |  |  |  |  |  |     |  |  |  |  |  |  |  |  |  |  |
  3  1  1  4  0  5  9  2  4  6  1--2  0  1  1  4  8  9  1  1  6  8
  |  |  |  |  |  |  |  |  |  |        |  |  |  |  |  |  |  |  |  |
  1  4  2  1  8  8  4  5  1  7--8--9--1  8  3  7  6  2  1  5  1  1
  |  |  |  |  |  |  |  |  |              |  |  |  |  |  |  |  |  |
  7  8  5  0  1  5  0  2  5--1--6--1--7--1  0  4  7  9  3  3  9  6
  |  |  |  |  |  |  |  |                    |  |  |  |  |  |  |  |
  4  1  1  5  8  9  4  6--2--7--2--8--2--9--3  6  6  1  1  1  5  8
  |  |  |  |  |  |  |                          |  |  |  |  |  |  |
  1  4  2  1  2  6  1--4--2--4--3--4--4--4--5--4  6  9  1  4  1  1
  |  |  |  |  |  |                                |  |  |  |  |  |
  7  9  6  0  8  0--6--1--6--2--6--3--6--4--6--5--6  0  2  3  8  5
  |  |  |  |  |                                      |  |  |  |  |
  5  1  1  6  3--8--4--8--5--8--6--8--7--8--8--8--9--9  1  1  5  8
  |  |  |  |                                            |  |  |  |
  1  5  2  1--0--7--1--0--8--1--0--9--1--1--0--1--1--1--1  3  1  1
  |  |  |                                                  |  |  |
  7  0  7--1--2--8--1--2--9--1--3--0--1--3--1--1--3--2--1--3  7  4
  |  |                                                        |  |
  6  1--5--1--1--5--2--1--5--3--1--5--4--1--5--5--1--5--6--1--5  8
  |                                                              |
  1--7--7--1--7--8--1--7--9--1--8--0--1--8--1--1--8--2--1--8--3--1
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 4n^2 - 11n + 8 (* see formula section *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

Formulas for rays in directions of 32 compass points:
SE 4n^2 -4n +1
SExS 64n^2 -113n +50
SSE 16n^2 -25n +10
SxE 64n^2 -115n +52
S 4n^2 -5n +2
SxW 64n^2 -117n +54
SSW 16n^2 -27n +12
SWxS 64n^2 -119n +56
SW 4n^2 -6n +3
SWxW 64n^2 -121n +58
WSW 16n^2 -29n +14
WxS 64n^2 -123n +60
W 4n^2 -7n +4
WxN 64n^2 -125n +62
WNW 16n^2 -31n +16
NWxW 64n^2 -127n +64
NW 4n^2 -8n +5
NWxN 64n^2 -129n +66
NNW 16n^2 -33n +18
NxW 64n^2 -131n +68
N 4n^2 -9n +6
NxE 64n^2 -133n +70
NNE 16n^2 -35n +20
NExN 64n^2 -135n +72
NE 4n^2 -10n +7
NExE 64n^2 -137n +74
ENE 16n^2 -37n +22
ExN 64n^2 -139n +76
E 4n^2 -11n +8
ExS 64n^2 -141n +78
ESE 16n^2 -39n +24
SExE 64n^2 -143n +80

A031035 Write n in base 8 and juxtapose.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 6, 0, 6
Offset: 1

Views

Author

Keywords

Comments

Apart from the initial term, identical to A054634.
Should not be merged with A054634 because there are many sequences which depend on this sequence starting with a 1. - N. J. A. Sloane, Jan 30 2010
An irregular table in which the n-th row lists the base-8 digits of n. - Jason Kimberley, Dec 07 2012
The base-8 Champernowne constant: it is normal in base 8. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), this sequence and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A007094.

Programs

  • Magma
    &cat[Reverse(IntegerToSequence(n,8)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Maple
    seq(op(ListTools:-Reverse(convert(n,base,8))),n=1..100); # Robert Israel, Nov 12 2024
  • Mathematica
    Flatten[ IntegerDigits[ Range[40], 8]] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 8] &, 105] (* Robert G. Wilson v, Jun 29 2014 *)
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import digits
    def A031035_gen(): return (d for m in count(1) for d in digits(m,8)[1:])
    A031035_list = list(islice(A031035_gen(),30)) # Chai Wah Wu, Jan 07 2022

A054634 Champernowne sequence: write n in base 8 and juxtapose.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Apart from the initial term, identical to A031035.
Should not be merged with A031035 because there are many sequences which depend on the latter starting with a 1. - N. J. A. Sloane, Jan 30 2010
An irregular table in which the n-th row lists the base-8 digits of n. - Jason Kimberley, Dec 07 2012
The base-8 Champernowne constant: it is normal in base 8. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and this sequence (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,8)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[ IntegerDigits[ Range[0, 40], 8]] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 8] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A054634_gen(): return chain.from_iterable(digits(m, 8)[1:] for m in count(0))
    A054634_list = list(islice(A054634_gen(), 30)) # Chai Wah Wu, Jan 07 2022

A030167 Continued fraction expansion of the Champernowne constant 0.1234567891011121314...

Original entry on oeis.org

0, 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15
Offset: 0

Views

Author

Keywords

Comments

The next term, a(18) = 457540111...783010987 has 166 digits.
It is followed by a(19 .. 39) = (6, 1, 1, 21, 1, 9, 1, 1, 2, 3, 1, 7, 2, 1, 83, 1, 156, 4, 58, 8, 54). - M. F. Hasler, Oct 25 2019
a(40) = 445735380...113172423 has 2504 digits. - Harvey P. Dale, May 23 2015, index corrected by M. F. Hasler, Oct 25 2019

Examples

			This is the continued fraction of the number 0.123456789101112131415... whose decimals are obtained by concatenating the base-10 representations of all positive integers.
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; ContinuedFraction[ N[ f[211]/ 10^(Floor[ Log[10, f[211] ]] + 1), Floor[ Log[10, f[211] ]] + 1], 19 ]
    chcon=Module[{con=FromDigits[Flatten[IntegerDigits/@Range[250]]]}, N[con/10^IntegerLength[con],IntegerLength[con]]]; ContinuedFraction[ chcon,19] (* Harvey P. Dale, Sep 18 2011 *)
    ContinuedFraction[N[ChampernowneNumber[10],10000]] (* Harvey P. Dale, May 23 2015 *)
  • PARI
    { default(realprecision, 6000); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); x=contfrac(x); for (n=1, 160, write("b030167.txt", n-1, " ", x[n])); write("b030167.txt", "160 1"); write("b030167.txt", "161 1"); } \\ Harry J. Smith, Apr 18 2009

Extensions

Edited by Daniel Forgues, Apr 01 2010, M. F. Hasler, Oct 25 2019

A054635 Champernowne sequence: write n in base 3 and juxtapose.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Essentially the same as A003137. - R. J. Mathar, Aug 29 2009
An irregular table in which the n-th row lists the base-3 digits of n. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Crossrefs

Cf. A054637 (partial sums).
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A007089, A077771.
Table in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and this sequence (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Haskell
    a054635 n k = a054635_tabf !! n !! k
    a054635_row n = a054635_tabf !! n
    a054635_tabf = map reverse a030341_tabf
    a054635_list = concat a054635_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 3] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
    First[RealDigits[ChampernowneNumber[3], 3, 100, 0]] (* Paolo Xausa, Jun 19 2024 *)
  • Python
    from sympy.ntheory.digits import digits
    def agen(limit):
        for n in range(limit):
            yield from digits(n, 3)[1:]
    print([an for an in agen(35)]) # Michael S. Branicky, Sep 01 2021

A066717 The continued fraction for the "binary" Champernowne constant.

Original entry on oeis.org

0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, 6, 5, 4, 4, 1, 2, 1, 1, 1, 1, 2, 22, 1, 2, 7, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Crossrefs

Cf. A030190 & A066716 (binary & decimal digits of the binary Champernowne constant), A033307 (decimal Champernowne constant).
Cf. A054635, A077771, A077772: base 3, decimals and continued fraction of ternary Champernowne constant.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^3} ]; ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 500]]
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 2] &, 20000], 0}, 2]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    A066717(b=2,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303\log(b)+1, nM. F. Hasler, Oct 25 2019

A077772 Continued fraction expansion of the ternary Champernowne constant.

Original entry on oeis.org

0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 15 2002

Keywords

Crossrefs

Cf. A054635 (ternary digits), A077771 (decimals).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.

Programs

  • Mathematica
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    \p 10000
    t=0;r=0.;T=1; for(n=1,1e6,d=#digits(n,3);t+=d;T*=3^d;r+=n/T;if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
    
  • PARI
    A077772(b=3,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303/log(b)+1, nM. F. Hasler, Oct 25 2019

A066716 Decimal expansion of the binary Champernowne constant 0.862240125868... whose binary expansion is the concatenation of 1, 2, 3, ... written in binary.

Original entry on oeis.org

8, 6, 2, 2, 4, 0, 1, 2, 5, 8, 6, 8, 0, 5, 4, 5, 7, 1, 5, 5, 7, 7, 9, 0, 2, 8, 3, 2, 4, 9, 3, 9, 4, 5, 7, 8, 5, 6, 5, 7, 6, 4, 7, 4, 2, 7, 6, 8, 2, 9, 9, 0, 9, 4, 5, 1, 6, 0, 7, 1, 2, 1, 4, 5, 5, 7, 3, 0, 6, 7, 4, 0, 5, 9, 0, 5, 1, 6, 4, 5, 8, 0, 4, 2, 0, 3, 8, 4, 4, 1, 4, 3, 8, 6, 1, 8, 1, 3, 3, 4
Offset: 0

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Comments

A theorem of Copeland & Erdős proves that this constant is 2-normal. - Charles R Greathouse IV, Feb 06 2015
This constant is transcendental. Note that this result is nontrivial: it is not a corollary of the result of Masaaki Amou saying that the base-b Champernowne constant has irrationality measure b, because the Thue-Siegel-Roth theorem only guarantees that a number with irrationality measure greater than 2 is transcendental. However, it is already stated in Masaaki Amou's paper that K. Mahler proved that the base-b Champernowne constant is transcendental for all b. - Jianing Song, Sep 27 2023

Examples

			0.8622401258680545715577902832493945785657647427682990945160712145573067405905...
		

Crossrefs

Cf. A030302 (binary digits), A030190 (same with initial 0), A030303 (indices of 1's), A007088, A047778 (concatenate binary 1..n).
Cf. A066717 (continued fraction), A365238 (reciprocal).
Cf. A100125 (Sum n/2^(n^2)).
Cf. A033307.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 100} ]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]]
    First[RealDigits[ChampernowneNumber[2], 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    my(s=0.); forstep(n=default(realprecision),1,-1,s=(s+n)>>#binary(n)); s \\ Charles R Greathouse IV, Feb 06 2015, corrected by M. F. Hasler, Mar 22 2017
    
  • PARI
    s=0;sum(n=1,31,n*.5^s+=logint(n,2)+1) \\ Accurate to 0.5^s. The sum up to n=31 is enough for standard precision of 38 digits. - M. F. Hasler, Mar 22 2017

Formula

The "binary" Champernowne constant is the number whose base-2 expansion is the concatenation of the binary representations of the integers, 0.(1)(10)(11)(100)(101)(110)(111)(1000)..., cf. A030302.

Extensions

Leading zero removed, offset adjusted, and keyword:cons added by R. J. Mathar, Mar 04 2010
Name edited by M. F. Hasler, Oct 26 2019

A033988 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive y-axis.

Original entry on oeis.org

0, 5, 1, 4, 3, 7, 8, 0, 4, 7, 7, 1, 2, 6, 2, 1, 8, 7, 4, 2, 6, 1, 8, 9, 2, 7, 6, 0, 6, 5, 1, 2, 0, 4, 1, 5, 8, 5, 1, 8, 8, 8, 2, 1, 2, 3, 2, 4, 9, 0, 2, 8, 9, 9, 3, 3, 2, 0, 3, 7, 9, 3, 4, 2, 8, 8, 4, 7, 1, 5, 5, 3, 7, 4, 5, 9, 7, 5, 6, 5, 9, 8, 7, 1, 5, 3, 7, 8, 4, 0, 8, 5, 6, 9, 9, 3, 1, 0, 9, 8, 1, 1, 6, 9, 9
Offset: 0

Views

Author

Keywords

Comments

In other words, write 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 ... in a clockwise spiral, starting with the 0 and taking the first step south; the sequence is then picked out from the resulting spiral by starting at the origin and moving north.

Examples

			  1---3---1---4---1
  |               |
  2   4---5---6   5
  |   |       |   |
  1   3   0   7   1
  |   |   |   |   |
  1   2---1   8   6
  |           |   |
  1---0---1---9   1
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it.
Then the sequence is obtained by reading vertically upwards, starting from the initial 0.
		

Crossrefs

Sequences based on the same spiral: A033953, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996.
Cf. A033307.

Programs

Formula

a(n) = A033307(4*n^2 + n - 1) for n > 0. - Andrew Woods, May 18 2012

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net)
Edited by Jon E. Schoenfield, Aug 12 2018
Previous Showing 31-40 of 158 results. Next