cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 80 results. Next

A187778 Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 05 2013

Keywords

Comments

This sequence is closed under multiplication.
Also 1 and the numbers where psi(n)/n = 2, or n/phi(n)=3, or psi(n)/phi(n)=6.
Also 1 and the numbers of the form 2^i*3^j with i, j >= 1 (A033845).
If M(n) is the n X n matrix whose elements m(i,j) = 2^i*3^j, with i, j >= 1, then det(M(n))=0.
Numbers n such that Product_{i=1..q} (1 + 1/d(i)) is an integer where q is the number of the distinct prime divisors d(i) of n. - Michel Lagneau, Jun 17 2016

Examples

			psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
		

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.

Crossrefs

Programs

  • Magma
    [6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
  • Mathematica
    Select[Range[10^4],#/EulerPhi[#]==3 || #==1&]
    Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
  • PARI
    dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]);
    k=0; n=0; while(k<10000,n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
    

Formula

For n > 1, a(n) = 6 * A003586(n).
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).

A215142 Numbers n such that the difference between the greatest prime divisor of n and the sum of the other distinct prime divisors equals 1.

Original entry on oeis.org

6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 231, 288, 324, 330, 384, 432, 455, 486, 546, 576, 648, 660, 663, 693, 768, 864, 935, 972, 990, 1092, 1122, 1152, 1235, 1296, 1311, 1320, 1458, 1463, 1482, 1536, 1617, 1638, 1650, 1728, 1944, 1955
Offset: 1

Views

Author

Michel Lagneau, Aug 04 2012

Keywords

Comments

A033845 is included in this sequence.

Examples

			1235 is in the sequence because 1235 = 5*13*19 and 19 - (5+13) = 1.
		

Crossrefs

Cf. A033845.

Programs

  • Maple
    with(numtheory):for n from 2 to 2000 do:x:=factorset(n):m:=nops(x):s:=0: s:=sum( '
    x[i] ', 'i'=1..m):q:=s-x[m]:if x[m]-q =1 then printf(`%d, `,n):else fi:od:
  • Mathematica
    gpdQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},Max[f]-Total[ Most[ f]] == 1]; Select[Range[2,2000],gpdQ] (* Harvey P. Dale, Aug 28 2013 *)

A336772 Sums s of positive exponents such that no prime of the form 2^j*3^k + 1 with j + k = s exists.

Original entry on oeis.org

12, 24, 33, 46, 48, 60, 72, 74, 80, 96, 102, 111, 118, 120, 130, 132, 141, 142, 144, 147, 159, 162, 165, 166, 168, 186, 200, 216, 234, 240, 242, 252, 258, 288, 306, 309, 312, 318, 358, 370, 374, 375, 384, 399, 405, 408, 414, 420, 432, 435, 462, 464, 468, 478
Offset: 1

Views

Author

Hugo Pfoertner, based on a suggestion from Rainer Rosenthal, Aug 24 2020

Keywords

Examples

			a(1) = 12, because none of the 11 numbers {2^1*3^11+1, 2^2*3^10+1, ..., 2^11*3^1+1} = {354295, 236197, 157465, 104977, 69985, 46657, 31105, 20737, 13825, 9217, 6145} is prime,
a(2) = 24: none of the 23 numbers {2^1*3^23+1, 2^2*3^22+1, ..., 2^23*3^1+1} = {188286357655, 125524238437, 83682825625, 55788550417, ..., 56623105, 37748737, 25165825} is prime.
		

Crossrefs

Programs

  • PARI
    for(s=2,500, my(t=1); for(j=1,s-1, my(k=s-j); if(isprime(2^j*3^k+1),t=0;break)); if(t,print1(s,", ")))

A339465 Primes p such that (p-1)/gpf(p-1) = 2^q * 3^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.

Original entry on oeis.org

19, 31, 37, 43, 61, 67, 73, 79, 103, 109, 127, 139, 157, 163, 181, 199, 223, 229, 241, 271, 277, 283, 307, 313, 337, 349, 367, 373, 379, 397, 409, 433, 439, 457, 487, 499, 523, 541, 577, 607, 613, 619, 643, 673, 709, 733, 739, 757, 787, 811, 823, 829, 853, 877, 907, 919
Offset: 1

Views

Author

Bernard Schott, Dec 09 2020

Keywords

Comments

Paul Erdős asked if there are infinitely many primes p such that (p-1)/A006530(p-1) = 2^k or = 2^q*3^r (see Richard K. Guy reference).
It is not known if this sequence is infinite.
Proposition: if prime p is a term, then p is of the form 6*m+1 (A002476).

Examples

			31 is prime, 30/5 = 6 = 2*3 hence 31 is a term.
37 is prime, 36/3 = 12 = 2^2*3 hence 37 is a term.
127 is prime, 126/7 = 18 = 2*3^2 hence 127 is a term.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Cf. A074781 (ratio=2^k), A339466 (ratio <> 2^k and <> 2^q*3^r).
Subsequence of A002476.

Programs

  • Magma
    s:=func; [p:p in PrimesInInterval(3,1000)|PrimeDivisors(a) eq [2,3] where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 09 2020
  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 3}:
    select(is_a, [$3..919]); # Peter Luschny, Dec 13 2020
  • Mathematica
    q[n_] := PrimeQ[n] && Module[{f = FactorInteger[n - 1]}, (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[1000], q] (* Amiram Eldar, Dec 09 2020 *)

Extensions

More terms from Marius A. Burtea, Dec 09 2020

A060211 Larger term of a pair of twin primes such that the prime factors of their average are only 2 and 3. Proper subset of A058383.

Original entry on oeis.org

7, 13, 19, 73, 109, 193, 433, 1153, 2593, 139969, 472393, 786433, 995329, 57395629, 63700993, 169869313, 4076863489, 10871635969, 2348273369089, 56358560858113, 79164837199873, 84537841287169, 150289495621633, 578415690713089, 1141260857376769, 57711166318706689
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Larger of twin primes p such that p-1 = (2^u)*(3^w), u,w >= 1.

Examples

			a(4) = 73, {71,73} are twin primes and (71 + 73)/2 = 72 = 2*2*2*3*3.
		

Crossrefs

Programs

  • Mathematica
    Take[Select[Sort[Flatten[Table[2^a 3^b,{a,250},{b,250}]]],AllTrue[#+{1,-1},PrimeQ]&]+1,23] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(p-2) && (vecmax(factor(p-1)[,1]) == 3); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A027856(n+1) + 1. - Amiram Eldar, Mar 17 2025

Extensions

Name corrected by Sean A. Irvine, Oct 31 2022

A343300 a(n) is p1^1 + p2^2 + ... + pk^k where {p1,p2,...,pk} are the distinct prime factors in ascending order in the prime factorization of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 27, 11, 11, 13, 51, 28, 2, 17, 11, 19, 27, 52, 123, 23, 11, 5, 171, 3, 51, 29, 136, 31, 2, 124, 291, 54, 11, 37, 363, 172, 27, 41, 354, 43, 123, 28, 531, 47, 11, 7, 27, 292, 171, 53, 11, 126, 51, 364, 843, 59, 136, 61, 963, 52, 2, 174, 1342, 67, 291, 532, 370, 71, 11, 73
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Apr 11 2021

Keywords

Comments

From Bernard Schott, May 07 2021: (Start)
a(n) depends only on prime factors of n (see formulas).
Primes are fixed points of this sequence.
Terms are in increasing order in A344023. (End)

Examples

			a(60) = 136 because the distinct prime factors of 60 are {2, 3, 5} and 2^1 + 3^2 + 5^3 = 136.
		

Crossrefs

Cf. A027748, A344023 (terms ordered).

Programs

  • Maple
    a:= n-> (l-> add(l[i]^i, i=1..nops(l)))(sort(map(i-> i[1], ifactors(n)[2]))):
    seq(a(n), n=1..73);  # Alois P. Heinz, Sep 19 2024
  • Mathematica
    {0}~Join~Table[Total[(a=First/@FactorInteger[k])^Range@Length@a],{k, 2, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^k); \\ Michel Marcus, Apr 11 2021

Formula

a(p^k) = p for p prime and k>=1.
From Bernard Schott, May 07 2021: (Start)
a(A033845(n)) = 11;
a(A033846(n)) = 27;
a(A033847(n)) = 51;
a(A033848(n)) = 123;
a(A033849(n)) = 28;
a(A033850(n)) = 52;
a(A033851(n)) = 54;
a(A288162(n)) = 171. (End)

A372972 Numbers k such that A372720(k) is negative.

Original entry on oeis.org

162, 250, 324, 384, 486, 648, 686, 768, 972, 1152, 1250, 1296, 1372, 1458, 1536, 1728, 1875, 1944, 2058, 2250, 2304, 2430, 2500, 2560, 2592, 2662, 2738, 2916, 3000, 3072, 3362, 3402, 3456, 3698, 3750, 3840, 3888, 3993, 4050, 4116, 4374, 4394, 4418, 4500, 4608
Offset: 1

Views

Author

Michael De Vlieger, Jun 02 2024

Keywords

Comments

Let tau = A000005, let omega = A001221, let f = A008479, and let g = A372720.
For squarefree k, A372720(k) >= 0, since A008479(k) = 1 while tau(k) = 2^omega(k).
For prime power p^m, A372720(p^m) = 1, since A008479(p^m) = m while tau(k) = m+1.
Therefore, apart from a(1) = 1, this sequence is a proper subset of A126706.
In the sequence R = {k = m*s : rad(m) | s, s > 1 in A120944}, there is a smallest term k such that g(k) <= 0 and a largest term k such that g(k) is positive. For instance, in A033845 where s = 6, only {6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864} are such that g(k) > 0.
For s > 1, an infinite number of k in R are such that g(k) is negative. For example, with s = 6, all terms k > 864 in A033845 are in this sequence.
Conjecture: proper subset of A361098, hence of A360765 and A360768. This is to say that k = a(n) is such that A003557(k) >= A119288(k), i.e., k/rad(k) >= second smallest prime factor of k, and A003557(k) > A053669(k), where A053669(k) is the smallest prime q that does not divide k.

Examples

			a(1) = 162 = 2*3^4, since tau(162) - f(162)
     = (1+1)*(4+1) - card(A369609(162))
     = 10 - 12 = -2.
a(2) = 250 = 2*5^3, since tau(250) - f(250)
     = (1+1)*(3+1) - card(A369609(250))
     = 8 - 9 = -1.
a(3) = 324 = 2^2*3^4, since tau(324) - f(324)
     = (2+1)*(4+1) - card(A369609(324))
     = 15 - 16 = -1, etc.
		

Crossrefs

Programs

A380446 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k), where omega = A001221.

Original entry on oeis.org

36, 144, 216, 324, 576, 900, 1296, 1728, 2304, 2916, 3600, 5184, 5832, 7776, 8100, 9216, 11664, 13824, 14400, 20736, 22500, 26244, 27000, 32400, 36864, 44100, 46656, 57600, 72900, 82944, 90000, 104976, 110592, 129600, 147456, 157464, 176400, 186624, 202500, 216000
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for k in A055932.
Union of {k^m : rad(k) | P(i), m >= 2}, rad = A007947, P = A002110. Therefore perfect powers in A033845, A143207, A147571, A147572, etc. are proper subsets.
Terms are even. For a(n) such that omega(a(n)) > 2, a(n) mod 10 = 0, where omega = A001221.

Examples

			Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading. Terms that also appear in A368682 are marked by "#":
                         Exponents
 n      a(n)             2.3.5.7.11
-----------------------------------
 1       36 =    6^2  #  2.2
 2      144 =   12^2  #  4.2
 3      216 =    6^3  #  3.3
 4      324 =   18^2     2.4
 5      576 =   24^2  #  6.2
 6      900 =   30^2  #  2.2.2
 7     1296 =    6^4  #  4.4
 8     1728 =   12^3  #  6.3
 9     2304 =   48^2  #  8.2
10     2916 =   54^2     2.6
11     3600 =   60^2  #  4.2.2
12     5184 =   72^2  #  6.4
26    44100 =  210^2  #  2.2.2.2
90  5336100 = 2310^2  #  2.2.2.2.2
		

Crossrefs

Programs

  • Mathematica
    (* Load linked Mathematica algorithm, then: *)
    Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A055932 = A304250 \ A246547.

A083263 Numbers k such that the difference of the largest and smallest prime factors of k divides k.

Original entry on oeis.org

6, 12, 18, 24, 30, 36, 48, 54, 60, 70, 72, 90, 96, 108, 120, 140, 144, 150, 162, 180, 192, 198, 210, 216, 240, 270, 280, 286, 288, 300, 324, 350, 360, 384, 396, 420, 432, 450, 480, 486, 490, 510, 540, 560, 572, 576, 594, 600, 630, 646, 648, 700, 720, 750, 768
Offset: 1

Views

Author

Labos Elemer, May 12 2003

Keywords

Examples

			Every number k of the form 2^i * 3^j * m is a term because 3 - 2 = 1 is always a divisor of k.
Every number k of the form 2 * p * (p+2) * m is a term if p and p+2 form a twin prime pair.
Other terms include some in which the difference d = gpf(k) - lpf(k) > 2 is prime (e.g., 30 = 2*3*5 = 3*10; d = 5 - 2 = 3) and some in which it is composite (e.g., 8710 = 2*5*13*67 = 65*134; d = 67 - 2 = 65).
All terms are even. - _Jon E. Schoenfield_, Jul 10 2018
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; mi[x_] := Min[ba[x]] Do[s=ma[ba[n]]-mi[ba[n]]; If[Mod[n, s]==0, Print[{n, ba[n], s}]], {n, 1, 10000}]

Formula

Solutions to x mod (A006530(x) - A020639(x)) = 0.

Extensions

Edited by Jon E. Schoenfield, Jul 10 2018

A228104 Numbers of form 2^(2i-1)*3^j, with i,j > 0.

Original entry on oeis.org

6, 18, 24, 54, 72, 96, 162, 216, 288, 384, 486, 648, 864, 1152, 1458, 1536, 1944, 2592, 3456, 4374, 4608, 5832, 6144, 7776, 10368, 13122, 13824, 17496, 18432, 23328, 24576, 31104, 39366, 41472, 52488, 55296, 69984, 73728, 93312, 98304, 118098, 124416, 157464, 165888
Offset: 1

Views

Author

Ralf Stephan, Aug 10 2013

Keywords

Crossrefs

Subsequence of A033845 and A011775.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    sort([seq(seq(2^i * 3^j, j = 1 .. ilog[3](N/2^i)),i=1..ilog2(N/3),2)]); # Robert Israel, Oct 14 2024
  • Mathematica
    With[{max = 2*10^5}, Flatten[Table[2^(2*i-1)*3^j, {i, 1, (Log2[max]+1)/2}, {j, 1, Log[3, max/2^(2*i-1)]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • PARI
    vecsort(vector(10000,n,2^(2*((n-1)%100)+1)*3^((n\100)+1))) /* (first 100 values) */

Formula

Sum_{n>=1} 1/a(n) = 1/3. - Amiram Eldar, Mar 29 2025
Previous Showing 41-50 of 80 results. Next