cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A221693 T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without consecutive moves in the same direction.

Original entry on oeis.org

1, 3, 1, 6, 21, 1, 13, 152, 144, 1, 28, 1336, 3112, 987, 1, 60, 11036, 95076, 63676, 6765, 1, 129, 92660, 2627760, 7033429, 1302720, 46368, 1, 277, 774380, 74531185, 659020617, 520770016, 26650988, 317811, 1, 595, 6479664, 2098932856
Offset: 1

Views

Author

R. H. Hardin Jan 22 2013

Keywords

Comments

Table starts
.1.........3............6..............13................28................60
.1........21..........152............1336.............11036.............92660
.1.......144.........3112...........95076...........2627760..........74531185
.1.......987........63676.........7033429.........659020617.......64509677154
.1......6765......1302720.......520770016......164441398718....55433846144035
.1.....46368.....26650988.....38558774282....41023076707062.47681199145323119
.1....317811....545221260...2854945130275.10233875156794211
.1...2178309..11154026300.211383822013331
.1..14930352.228186749552
.1.102334155
.1

Examples

			Some solutions for n=3 k=4
..0..3..0..1....0..4..0..1....2..0..2..0....0..3..2..0....2..1..0..1
..0..1..0..1....1..1..1..1....1..0..0..2....0..1..1..1....0..2..3..0
..1..2..3..0....1..1..0..1....1..3..0..1....2..0..1..1....1..1..0..1
		

Crossrefs

Column 2 is A033888
Row 1 is A002478

A102310 Square array read by antidiagonals: Fibonacci(k*n).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55
Offset: 1

Views

Author

Ralf Stephan, Jan 06 2005

Keywords

Examples

			1,  1,   2,    3,     5, ...
1,  3,   8,   21,    55, ...
2,  8,  34,  144,   610, ...
3, 21, 144,  987,  6765, ...
5, 55, 610, 6765, 75025, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.

Crossrefs

Equals A000045(A003991(k, n)).
Columns include A000045, A001906, A014445, A033888, A102312.
Main diagonal is in A054783. Antidiagonal sums are in A102311.

Programs

  • Magma
    /* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019
  • Mathematica
    Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 10 2017 *)
  • Sage
    F = fibonacci # A000045
    def A(n, k):
        return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k)
    [A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019
    

Formula

For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).
A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019

A134501 a(n) = Fibonacci(7n + 3).

Original entry on oeis.org

2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-2+3*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n+1) - 3*A049667(n). (End)
a(n) = A000045(A017017(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed to 0 by Vincenzo Librandi, Apr 16 2011

A134502 a(n) = Fibonacci(7n + 4).

Original entry on oeis.org

3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-3-2*x) / (-1 + 29*x + x^2).
a(n) = 2*A049667(n) + 3*A049667(n+1). (End)
a(n) = A000045(A017029(n)). - Michel Marcus, Nov 07 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A337928 Numbers w such that (F(2n+1)^2, -F(2n)^2, -w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 5, 31, 209, 1429, 9791, 67105, 459941, 3152479, 21607409, 148099381, 1015088255, 6957518401, 47687540549, 326855265439, 2240299317521, 15355239957205, 105246380382911, 721369422723169, 4944339578679269, 33889007628031711, 232278713817542705
Offset: 0

Views

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(5)^2)^3 + 2*(-F(4)^2)^3 + (-31)^3 = 2*(25)^3 + 2*(-9)^3 + (-31)^3 = 1, a(2) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n+1]^6 - 2*Fibonacci[2n]^6 - 1)^(1/3), {n, 0, 21}]
    Table[(Fibonacci[2n+1]*Fibonacci[2n+2]- Fibonacci[2n]^2), {n, 0, 21}] (* Wolfgang Berndt, May 26 2023 *)
    LinearRecurrence[{8,-8,1},{1,5,31},30] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    Vec((1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 01 2020

Formula

a(n) = (2*F(2*n+1)^6 - 2*F(2*n)^6 - 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: (1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>2.
(End)
a(n) = 2*A081018(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A064170(n+2) + A033888(n). - Flávio V. Fernandes, Jan 10 2021
a(n) = F(2*n+1)*F(2*n+2) - F(2*n)^2. - Wolfgang Berndt, May 26 2023
a(2*n-1) = 5 + 6*Sum_{k=1..n-1} F(8*k+1), a(2*n) = 1 + 6*Sum_{k=1..n} F(8*k-3). - XU Pingya, Jun 09 2024

A337929 Numbers w such that (F(2*n-1)^2, -F(2*n)^2, w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 11, 79, 545, 3739, 25631, 175681, 1204139, 8253295, 56568929, 387729211, 2657535551, 18215019649, 124847601995, 855718194319, 5865179758241, 40200540113371, 275538601035359, 1888569667134145, 12944449068903659, 88722573815191471, 608113567637436641
Offset: 1

Views

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(3)^2)^3 + 2*(-F(4)^2)^3 + 11^3 = 2*4^3 + 2*(-9)^3 + 11^3 = 1, 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n]^6 - 2*Fibonacci[2n-1]^6 + 1)^(1/3), {n, 22}]
    LinearRecurrence[{8,-8,1},{1,11,79},30] (* Harvey P. Dale, Aug 23 2021 *)

Formula

a(n) = (2*F(2*n)^6 - 2*F(2*n-1)^6 + 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: x*(1 + 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>3.
(End)
a(n) = 2*A003482(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A033888(n) - A064170(n+2). - Flávio V. Fernandes, Jan 10 2021

A003481 a(n) = 7*a(n-1) - a(n-2) + 5.

Original entry on oeis.org

2, 20, 143, 986, 6764, 46367, 317810, 2178308, 14930351, 102334154, 701408732, 4807526975, 32951280098, 225851433716, 1548008755919, 10610209857722, 72723460248140, 498454011879263, 3416454622906706, 23416728348467684, 160500643816367087, 1100087778366101930
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033888.

Programs

  • Mathematica
    t = {2, 20}; Do[AppendTo[t, 7*t[[-1]] - t[[-2]] + 5], {n, 2, 30}] (* T. D. Noe, Oct 07 2013 *)
    nxt[{a_,b_}]:={b,7b-a+5}; NestList[nxt,{2,20},30][[All,1]] (* Harvey P. Dale, Aug 11 2019 *)

Formula

G.f.: ( -2-4*x+x^2 ) / ( (x-1)*(x^2-7*x+1) ). - Simon Plouffe in his 1992 dissertation
a(n) = Fibonacci(4(n+1)) - 1 = A033888(n+1) - 1. - Ralf Stephan, Feb 24 2004, index corrected R. J. Mathar, Sep 18 2008

Extensions

More terms from Ralf Stephan, Feb 24 2004

A254884 a(n) = Fibonacci(2*n) + ((-1)^n-1)*Fibonacci(n).

Original entry on oeis.org

0, -1, 3, 4, 21, 45, 144, 351, 987, 2516, 6765, 17533, 46368, 120927, 317811, 830820, 2178309, 5699693, 14930352, 39079807, 102334155, 267892404, 701408733, 1836254589, 4807526976, 12586118975, 32951280099, 86267178436, 225851433717, 591285701421, 1548008755920
Offset: 0

Views

Author

Peter Luschny, Mar 09 2015

Keywords

Crossrefs

Programs

  • Maple
    gf := x -> x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1):
    seq(coeff(series(gf(x),x,n+1),x,n), n=0..30);
  • Mathematica
    LinearRecurrence[{4,-1,-11,11,1,-4,1}, {0,-1,3,4,21,45,144}, 31]
    LinearRecurrence[{3, 2, -9, 2, 3, -1},{0, -1, 3, 4, 21, 45},31] (* Ray Chandler, Aug 03 2015 *)
  • Sage
    A254884 = lambda n: fibonacci(2*n) + ((-1)^n-1)*fibonacci(n)
    [A254884(n) for n in range(31)]

Formula

Let phi = (1+sqrt(5))/2, p(n) = phi^n - (-phi)^(-n) and FL(n) = 1 + (p(n-1) + p(n+1) + p(2*n-1)) / sqrt(5).
a(n) = FL(-n) - FL(n). By this definition a(n) is a doubly infinite sequence.
a(n) = -a(-n) for all n in Z.
a(n) = A006172(n) - A005522(n).
a(2*n) = A033888(n).
G.f.: x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1).
a(n) = 4*a(n-1) - a(n-2) - 11*a(n-3) + 11*a(n-4) + a(n-5) - 4*a(n-6) + a(n-7).

A081072 Fibonacci(4*n) + 3, or Fibonacci(2*n+2)*Lucas(2*n-2).

Original entry on oeis.org

3, 6, 24, 147, 990, 6768, 46371, 317814, 2178312, 14930355, 102334158, 701408736, 4807526979, 32951280102, 225851433720, 1548008755923, 10610209857726, 72723460248144, 498454011879267, 3416454622906710, 23416728348467688, 160500643816367091, 1100087778366101934
Offset: 0

Views

Author

R. K. Guy, Mar 04 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A004187, A033888.

Programs

  • Magma
    [Fibonacci(4*n)+3: n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    with(combinat): for n from 0 to 40 do printf(`%d,`,fibonacci(4*n)+3) od: # James Sellers, Mar 05 2003
  • Mathematica
    Fibonacci[4*Range[0, 25]] + 3 (* Paolo Xausa, Jul 03 2025 *)
  • Maxima
    makelist(fib(4*n)+3, n, 0, 30); /* Martin Ettl, Nov 11 2012 */
    
  • PARI
    Vec((-3+18*x)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Michel Marcus, Dec 23 2014

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
G.f.: ( -3+18*x ) / ( (x-1)*(x^2-7*x+1) ).
a(n) = 3+A033888(n). (End)
a(n) = (A004187(n)+1)*3. - Martin Ettl, Nov 11 2012

A134489 a(n) = Fibonacci(5*n + 2).

Original entry on oeis.org

1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

The o.g.f. of {F(m*n + 2)}_{n>=0}, for m = 1, 2, ..., is
G(m,x) = (1 + F(m - 2)*x) / (1 - L(m)*x + (-1)^m*x^2), with F = A000045 and F(-1) = 1, and L = A000032. - Wolfdieter Lang, Feb 06 2023

Crossrefs

Programs

  • Magma
    [Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Table[Fibonacci[5n + 2], {n, 0, 30}]
    LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)

Formula

From R. J. Mathar, Jul 04 2011: (Start)
G.f.: (-1-2*x) / (-1 + 11*x + x^2).
a(n) = 2*A049666(n) + A049666(n+1). (End)
a(n) = A000045(A016873(n)). - Michel Marcus, Nov 05 2013
Previous Showing 11-20 of 26 results. Next