cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A364265 The first term in a chain of at least 3 consecutive numbers each with exactly 6 distinct prime factors (i.e., belonging to A074969).

Original entry on oeis.org

323567034, 431684330, 468780388, 481098980, 577922904, 639336984, 715008644, 720990620, 726167154, 735965384, 769385252, 808810638, 822981560, 831034918, 839075510, 847765554, 879549670, 895723268, 902976710, 903293468, 904796814, 918520420, 940737005, 944087484, 982059364
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Comments

To distinguish this from A259349: "Numbers n with exactly k distinct prime factors" means numbers with A001221(n) = omega(n) = k, which specifies that in the prime factorization n = Product_{i>=1} p_i^(e_i), e_i >= 1, the exponents are ignored, and only the size of the set of the (distinct) p_i is considered. In A259349, the numbers n are products of k distinct primes, which means in the prime factorization of n, all exponents e_i are equal to 1. (If all exponents e_i = 1, the n are squarefree, i.e., in A005117.) Rephrased: the n which are products of k distinct primes have A001221(n) = omega(n) = A001222(n) = bigomega(n) = k, whereas the n which have exactly k distinct prime factors are the superset of (weaker) requirement A001221(n) = omega(n) = k. - R. J. Mathar, Jul 18 2023

Crossrefs

Cf. A259349 (requires squarefree). Subsequence of A273879.
Cf. A364266 (5 distinct factors).
See also A001221, A001222, A005117.
Numbers divisible by d distinct primes: A246655 (d=1), A007774 (d=2), A033992 (d=3), A033993 (d=4), A051270 (d=5), A074969 (d=6), A176655 (d=7), A348072 (d=8), A348073 (d=9).

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 6 then
            if omega(k+1) = 6 then
                if omega(k+2) = 6 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • PARI
    upto(n) = {my(res = List(), streak = 0); forfactored(i = 2, n, if(#i[2]~ == 6, streak++; if(streak >= 3, listput(res, i[1] - 2)), streak = 0)); res} \\ David A. Corneth, Jul 18 2023

Formula

a(1) = A138206(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 6}.

Extensions

More terms from David A. Corneth, Jul 18 2023

A365795 Numbers k such that omega(k) = 3 and its prime factors satisfy the equation p_1 + p_2 = p_3.

Original entry on oeis.org

30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2160, 2240, 2250, 2288, 2400, 2430, 2450
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

The lower prime factor p_1 is equal to 2 and the other two are twin primes: p_3 - p_2 = 2.

Examples

			60 is a term since 60 = 2^2*3*5 and 2 + 3 = 5.
286 is a term since 286 = 2*11*13 and 2 + 11 = 13.
		

Crossrefs

Subsequence of A033992 and of A071140.

Programs

  • Mathematica
    Select[Range[2500],PrimeNu[#]==3&&Part[First/@FactorInteger[#],1]+Part[First/@FactorInteger[#],2]==Part[First/@FactorInteger[#],3]&]
  • PARI
    isok(k) = if (omega(k)==3, my(f=factor(k)[,1]); f[1] + f[2] == f[3]); \\ Michel Marcus, Sep 19 2023

A225228 Numbers with prime signatures (1,1,1) or (2,2,1) or (3,2,2).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 180, 182, 186, 190, 195, 222, 230, 231, 238, 246, 252, 255, 258, 266, 273, 282, 285, 286, 290, 300, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 396, 399, 402, 406, 410, 418, 426, 429
Offset: 1

Views

Author

Reinhard Zumkeller, May 03 2013

Keywords

Comments

Union of A007304, A179643 and A179695; subsequence of A033992;
A001221(a(n)) = 3 and A051903(a(n)) <= A051904(a(n)) + 1 and A001222(a(n)) = 3 or 5 or 7;
A050326(a(n)) = 5.

Examples

			A007304(1) = 2*3*5 = 30, A206778(30,1..8)=[1,2,3,5,6,10,15,30]:
A050326(30) = #{30, 15*2, 10*3, 6*5, 5*3*2} = 5;
A179643(1) = 2^2*3^2*5 = 180, A206778(180,1..8)=[1,2,3,5,6,10,15,30]:
A050326(180) = #{30*6, 30*3*2, 15*6*2, 10*6*3, 6*5*3*2} = 5;
A179695(1) = 2^3*3^2*5^2 = 1800, A206778(1800,1..8)=[1,2,3,5,6,10,15,30]:
A050326(1800) = #{30*10*6, 30*6*5*2, 30*10*3*2, 15*10*6*2, 10*6*5*3*2} = 5.
		

Crossrefs

Cf. A124010.

Programs

  • Haskell
    a225228 n = a225228_list !! (n-1)
    a225228_list = filter f [1..] where
       f x = length es == 3 && sum es `elem` [3,5,7] &&
                               maximum es - minimum es <= 1
             where es = a124010_row x
    
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2]~)); f==[1,1,1] || f==[1,2,2] || f==[2,2,3] \\ Charles R Greathouse IV, Jul 28 2016

Formula

a(n) ~ 2n log n / (log log n)^2. - Charles R Greathouse IV, Jul 28 2016

A304636 Numbers n with prime omicron 3, meaning A304465(n) = 3.

Original entry on oeis.org

8, 27, 30, 42, 66, 70, 78, 102, 105, 110, 114, 125, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 343, 345, 354, 357, 360, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

If n > 1 is not a prime number, we have A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= omicron(n) > 1 where Omega = A001222, omega = A001221, and omicron = A304465.

Examples

			This is a list of normalized factorizations (see A112798) of selected entries:
     8: {1,1,1}
    30: {1,2,3}
   360: {1,1,1,2,2,3}
   720: {1,1,1,1,2,2,3}
   900: {1,1,2,2,3,3}
  1440: {1,1,1,1,1,2,2,3}
  2160: {1,1,1,1,2,2,2,3}
  2880: {1,1,1,1,1,1,2,2,3}
  4320: {1,1,1,1,1,2,2,2,3}
  5760: {1,1,1,1,1,1,1,2,2,3}
  8640: {1,1,1,1,1,1,2,2,2,3}
Starting with A112798(1801800) and repeatedly taking the multiset of multiplicities we have {1,1,1,2,2,3,3,4,5,6} -> {1,1,1,2,2,3} -> {1,2,3} -> {1,1,1} -> {3}, so 1801800 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join@@Position[Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,200}],3]

A112802 Number of ways of representing 2n-1 as sum of three integers with 3 distinct prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Sep 19 2005

Keywords

Comments

Meng proves a remarkable generalization of the Goldbach-Vinogradov classical result that every sufficiently large odd integer N can be partitioned as the sum of three primes N = p1 + p2 + p3. The new proof is that every sufficiently large odd integer N can be partitioned as the sum of three integers N = a + b + c where each of a, b, c has k distinct prime factors for the same k.

Examples

			a(83) = 1 because the only partition into three integers each with 3 distinct prime factors of (2*83)-1 = 165 is 165 = 30 + 30 + 105 = (2*3*5) + (2*3*5) + (3*5*7). Coincidentally, 165 itself has three distinct prime factors 165 = 3 * 5 * 11.
a(89) = 1 because the only partition into three integers each with 3 distinct prime factors of (2*89)-1 = 177 = 30 + 42 + 105 = (2*3*5) + (2*3*7) + (3*5*7).
a(107) = 2 because the two partitions into three integers each with 3 distinct prime factors of (2*107)-1 = 213 are 213 = 30 + 78 + 105 = 42 + 66 + 105.
		

Crossrefs

Programs

  • Maple
    isA033992 := proc(n)
        numtheory[factorset](n) ;
        if nops(%) = 3 then
            true;
        else
            false;
        end if;
    end proc:
    A033992 := proc(n)
        option remember;
        local a;
        if n = 1 then
            30;
        else
            for a from procname(n-1)+1 do
                if isA033992(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    A112802 := proc(n)
        local a,i,j,p,q,r,n2;
        n2 := 2*n-1 ;
        a := 0 ;
        for i from 1 do
            p := A033992(i) ;
            if 3*p > n2 then
                return a;
            else
                for j from i do
                    q := A033992(j) ;
                    r := n2-p-q ;
                    if r < q then
                        break;
                    end if;
                    if isA033992(r) then
                        a := a+1 ;
                    end if;
                end do:
            end if ;
        end do:
    end proc:
    for n from 1 do
        printf("%d %d\n",n,A112802(n));
    end do: # R. J. Mathar, Jun 09 2014

Formula

Number of ways of representing 2n-1 as sum of three members of A033992. Number of ways of representing 2n-1 as a + b + c where omega(a) = omega(b) = omega(c) = 3, where omega=A001221.

A136152 Composites one larger than a prime and with exactly three distinct prime factors.

Original entry on oeis.org

30, 42, 60, 84, 90, 102, 110, 114, 132, 138, 140, 150, 168, 174, 180, 182, 198, 228, 230, 234, 240, 252, 258, 264, 270, 282, 294, 308, 312, 318, 348, 350, 354, 360, 374, 380, 402, 410, 434, 440, 444, 450, 468, 480, 492, 504, 522, 558, 564, 572, 588, 594, 600
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Examples

			a(0)=30 because 30 follows the prime 29 and has three factors 2, 3 and 5.
		

Crossrefs

Programs

  • Maple
    isA008864 := proc(n) if n -prevprime(n) = 1 then true ; else false ; fi ; end: isA033992 := proc(n) if nops(numtheory[factorset](n)) = 3 then true ; else false ; fi ; end: isA136152 := proc(n) isA008864(n) and isA033992(n) ; end: for n from 1 do p := ithprime(n) ; if isA136152(p+1) then print(p+1) ; fi ; od: # R. J. Mathar, Feb 20 2008
  • Mathematica
    Select[Prime[Range[110]]+1,PrimeNu[#]==3&] (* Harvey P. Dale, Apr 08 2012 *)

Formula

Find primes followed by N with exactly three prime factors, without repetition.
Equals A008864 INTERSECT A033992. - R. J. Mathar, Feb 20 2008

Extensions

Edited by R. J. Mathar, Feb 20 2008

A287483 Irregular triangle T(n,k) read by rows: row n lists numbers m with A002110(n) <= m < A002110(n+1) such that omega(m) = n.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 14, 15, 21, 22, 26, 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1290
Offset: 0

Views

Author

Michael De Vlieger, May 25 2017

Keywords

Comments

The primorial A002110(n) is the smallest squarefree number with n prime factors. Here the n-th row of the triangle is a list of squarefree numbers with n prime factors greater than and including A002110(n) but less than A002110(n+1).
A287484(n) gives row lengths.

Examples

			The sequence begins with 1 as it is equal to A002110(0) and has 0 prime factors. The first primes less than 6 come next, followed by the first squarefree semiprimes (A006881) less than 30 and the smallest terms of A033992 less than 210, etc.
Triangle begins:
n   Row n
0:   1;
1:   2,  3,  5;
2:   6, 10, 14, 15, 21,  22,  26;
3:  30, 42, 66, 70, 78, 102, 105, 110, 114, 130, ..., 195;
    ...
In each row n, the squarefree terms m must have omega(m) = n.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range[#, Prime[n + 1] # - 1] &@ Product[Prime@ i, {i, n}], And[SquareFreeQ@ #, PrimeOmega@ # == n] &], {n, 0, 4}] // Flatten

Extensions

Edited by N. J. A. Sloane, Jun 05 2017

A064040 Integers whose number of distinct prime divisors is prime.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Lior Manor, Aug 23 2001

Keywords

Comments

For all terms below 210 this sequence and A024619 are identical.

Examples

			210 = 2*3*5*7 has 4 prime factors, hence it is not here, but it is part of A024619.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(nops(ifactors(n)[2])):
    select(q, [$1..210])[];  # Alois P. Heinz, Apr 18 2024
  • Mathematica
    Select[Range[200], PrimeQ[PrimeNu[#]] &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    n=0; for (m=1, 10^9, if (isprime(omega(m)), write("b064040.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Sep 06 2009
    
  • PARI
    is(n)=isprime(omega(n)) \\ Charles R Greathouse IV, Sep 18 2015

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
Name edited by Michel Marcus, Oct 16 2023

A137563 Fibonacci numbers with three distinct prime divisors.

Original entry on oeis.org

610, 987, 2584, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 25 2008

Keywords

Examples

			The distinct prime divisors of the Fibonacci number 610 are 2, 5 and 61.
The distinct prime divisors of the Fibonacci number 44945570212853 are 269, 116849 and 1429913.
		

Crossrefs

Intersection of A033992 and A000045. - Michel Marcus, Mar 24 2018
Column k=3 of A303218.

Programs

  • GAP
    P1:=List([1..110],n->Fibonacci(n));;
    P2:=List([1..Length(P1)],i->Filtered(DivisorsInt(P1[i]),IsPrime));;
    a:=List(Filtered([1..Length(P2)],i->Length(P2[i])=3),j->P1[j]); # Muniru A Asiru, Mar 25 2018
  • Maple
    with(numtheory): with(combinat): a:=proc(n) if nops(factorset(fibonacci(n)))= 3 then fibonacci(n) else end if end proc: seq(a(n),n=1..110); # Emeric Deutsch, May 18 2008
  • Mathematica
    Select[Array[Fibonacci, 120], PrimeNu@ # == 3 &] (* Michael De Vlieger, Apr 10 2018 *)
  • PARI
    lista(nn) = for (n=1, nn, if (omega(f=fibonacci(n))==3, print1(f, ", "))); \\ Michel Marcus, Mar 24 2018
    

Formula

a(n) = A000045(A114841(n)). - Michel Marcus, Mar 24 2018

Extensions

More terms from Emeric Deutsch, May 18 2008

A306908 Numbers k with exactly three distinct prime factors and such that phi(k) is a square.

Original entry on oeis.org

60, 114, 126, 170, 204, 240, 273, 285, 315, 364, 370, 380, 438, 444, 456, 468, 504, 540, 680, 816, 825, 902, 960, 969, 978, 1010, 1026, 1071, 1095, 1100, 1134, 1212, 1258, 1292, 1358, 1456, 1460, 1480, 1500, 1520, 1729, 1746, 1752, 1776, 1824, 1836, 1872
Offset: 1

Views

Author

Bernard Schott, Mar 16 2019

Keywords

Comments

This sequence is the intersection of A033992 and A039770.
The integers with only one prime factor and whose totient is a square are in A002496 and A054755, the integers with two prime factors and whose totient is a square are in A324745, A324746 and A324747.

Examples

			1st family: 273 = 3 * 7 * 13 and phi(273) = 12^2.
2nd family: 816 = 2^4 * 3 * 17 and phi(816) = 16^2.
3rd family: 6975 = 3^2 * 5^2 * 31 and phi(6975) = 60^2.
		

Crossrefs

Intersection of A033992 and A039770.
Cf. A002496, A054755 (only one prime factor), A324745, A324746, A324747 (two prime factors).

Programs

  • Maple
    filter:= n -> issqr(numtheory:-phi(n)) and nops
    (numtheory:-factorset(n))=3:
    select(filter, [$1..2000]); # after Robert Israel in A324745
  • Mathematica
    Select[Range[2000], And[PrimeNu@ # == 3, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 31 2019 *)
  • PARI
    isok(n) = (omega(n)==3) && issquare(eulerphi(n)); \\ Michel Marcus, Mar 19 2019

Formula

1st family: The primitive terms are p*q*r with p,q,r primes and phi(p*q*r) = (p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s+1) * q^(2t+1) * r^(2u+1) with s,t,u >= 0, and phi(k) = (p^s * q^t * r^u * m)^2.
2nd family: The primitive terms are p^2 * q * r with p,q,r primes and phi(p^2 * q * r) = p*(p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s) * q^(2t+1) * r^(2u+1) with s >= 1, t,u >= 0, and phi(k) = (p^(s-1) * q^t * r^u * m)^2.
3rd family: The primitive terms are p^2 * q^2 * r with p,q,r primes and phi(p^2 * q^2 * r) = p*q*(p-1)*(q-1)*(r-1) = m^2. These primitives generate the entire family formed by the numbers k = p^(2s) * q^(2t) * r^(2u+1) with s,t> = 1, u >= 0, and phi(k) = (p^(s-1) * q^(t-1) * r^u * m)^2.
Previous Showing 11-20 of 35 results. Next