cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A159697 a(0)=9, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.

Original entry on oeis.org

9, 19, 40, 84, 176, 368, 768, 1600, 3328, 6912, 14336, 29696, 61440, 126976, 262144, 540672, 1114112, 2293760, 4718592, 9699328, 19922944, 40894464, 83886080, 171966464, 352321536, 721420288, 1476395008, 3019898880
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2009

Keywords

Comments

Diagonal of triangles A062111, A152920.

Examples

			a(0)=9, a(1) = 2*9 + 1 = 19, a(2) = 2*19 + 2 = 40, a(3) = 2*40 + 4 = 84, a(4) = 2*84 + 8 = 176, ...
		

Crossrefs

Programs

  • Magma
    I:=[9,19]; [n le 2 select I[n] else 4*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 02 2018
  • Mathematica
    RecurrenceTable[{a[0]==9,a[n]==2a[n-1]+2^(n-1)},a,{n,30}] (* or *) LinearRecurrence[{4,-4},{9,19},30] (* Harvey P. Dale, Mar 24 2013 *)
  • PARI
    Vec((9-17*x)/(1-2*x)^2 + O(x^40)) \\ Michel Marcus, Sep 29 2015
    

Formula

a(n) = Sum_{k=0..n} (k+9)*binomial(n,k).
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = (18+n)*2^(n-1).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f.: (9-17*x)/(1-2*x)^2. (End)
a(0)=9, a(1)=19, a(n) = 4*a(n-1) - 4*a(n-2). - Harvey P. Dale, Mar 24 2013
a(n) = 2*A079862(n-10). - Michel Marcus, Sep 29 2015
E.g.f.: (x+9)*exp(2*x). - G. C. Greubel, Jun 02 2018

Extensions

More terms from Vincenzo Librandi, Apr 30 2009

A129955 Third differences of A129952.

Original entry on oeis.org

2, 3, 8, 18, 40, 88, 192, 416, 896, 1920, 4096, 8704, 18432, 38912, 81920, 172032, 360448, 753664, 1572864, 3276800, 6815744, 14155776, 29360128, 60817408, 125829120, 260046848, 536870912, 1107296256, 2281701376, 4697620480
Offset: 0

Views

Author

Paul Curtz, Jun 10 2007

Keywords

Crossrefs

Programs

  • Magma
    m:=17; S:=&cat[ [ 1, 2*i ]: i in [0..m] ]; T:=[ &+[ Binomial(j-1, k-1)*S[k]: k in [1..j] ]: j in [1..2*m] ]; U:=[ T[n+1]-T[n]: n in[1..2*m-1] ]; V:=[ U[n+1]-U[n]: n in[1..2*m-2] ]; [ V[n+1]-V[n]: n in[1..2*m-3] ]; // Klaus Brockhaus, Jun 17 2007
    
  • Mathematica
    Differences[LinearRecurrence[{4,-4},{1,1,2,6},40],3] (* Harvey P. Dale, Sep 04 2020 *)
  • PARI
    {m=29; print1(2, ",", 3, ","); for(n=2, m, print1((n+6)*2^(n-2), ","))} \\ Klaus Brockhaus, Jun 17 2007

Formula

First differences of A129954: a(n) = A129954(n+1) - A129954(n).
a(n) = A034007(n+2)-2^(n-2) for n > 1.
a(0) = 2, a(1) = 3; for n > 1, a(n) = (n+6)*2^(n-2).
G.f.: (2-5*x+4*x^2-2*x^3)/(1-2*x)^2.
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = 256*log(2) - 12347/70.
Sum_{n>=0} (-1)^n/a(n) = 21851/210 - 256*log(3/2). (End)

Extensions

Edited and extended by Klaus Brockhaus, Jun 17 2007

A058394 A square array based on natural numbers (A000027) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 2, 2, 1, 3, 2, 3, 3, 1, 0, 3, 4, 5, 4, 1, 4, 3, 5, 7, 8, 5, 1, 0, 4, 6, 9, 12, 12, 6, 1, 5, 4, 7, 11, 16, 20, 17, 7, 1, 0, 5, 8, 13, 20, 28, 32, 23, 8, 1, 6, 5, 9, 15, 24, 36, 48, 49, 30, 9, 1, 0, 6, 10, 17, 28, 44, 64, 80, 72, 38, 10, 1, 7, 6, 11, 19, 32, 52, 80, 112, 129
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n,0)=T(n,2) by T(2n,0)=T(n,m) for some other value of m, would make the generating function change to coefficient of x^n in expansion of (1+x)^k/(1-x^2)^m. This would produce A058393, A058395, A057884 (and effectively A007318).

Examples

			Rows are (1,0,2,0,3,0,4,...), (1,1,2,2,3,3,...), (1,2,3,4,5,6,...), (1,3,5,7,9,11,...), etc.
		

Crossrefs

Rows are A027656 (A000027 with zeros), A008619, A000027, A005408, A008574 etc. Columns are A000012, A001477, A022856 etc. Diagonals include A034007, A045891, A045623, A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 etc. The triangle A055249 also appears in half of the array.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(2n, 0)=T(n, 2) and T(2n+1, 0)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^2.

A109975 Second differences of A045623, prefixed by an initial 1.

Original entry on oeis.org

1, 2, 4, 9, 20, 44, 96, 208, 448, 960, 2048, 4352, 9216, 19456, 40960, 86016, 180224, 376832, 786432, 1638400, 3407872, 7077888, 14680064, 30408704, 62914560, 130023424, 268435456, 553648128, 1140850688, 2348810240
Offset: 0

Views

Author

Paul Curtz, Jun 07 2007

Keywords

Comments

Binomial transform of [1,1,1,2,1,3,1,...]. [From Paul Barry, Mar 18 2009]

Crossrefs

Essentially a duplicate of A034007.

Programs

  • Magma
    I:=[1, 2, 4, 9]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 27 2012
  • Mathematica
    CoefficientList[Series[(1-2x+x^3)/(1-2x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 27 2012 *)
  • PARI
    a(n)=(n+6)<<(n-3)+(n<2) \\ Charles R Greathouse IV, Jun 01 2011
    

Formula

G.f.: (1-2x+x^3)/(1-2x)^2. [From Paul Barry, Mar 18 2009]
a(n) = 2^(n-3)*(n+6) with n>1, a(0)=1, a(1)=2 (see the PARI code). - Bruno Berselli, Jun 27 2012
G.f.: Q(0)/(1-x), where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013

A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1

Views

Author

Fedor Igumnov, Jan 28 2014

Keywords

Comments

1, 9, 45, 161, 497, 1409, ... is the sequence of perimeters (sum of border elements) of the triangle.
1, 5, 80, 3520, 394240, 107233280, 68629299200, ... is the sequence of determinants of the triangle.
Only the first three terms are odd.

Examples

			Triangle begins:
================================================
\k |    1     2     3     4     5     6     7
n\ |
================================================
1  |    1;
2  |    3,    5;
3  |    8,   12,   16;
4  |   20,   28,   36,   44;
5  |   48,   64,   80,   96,  112;
6  |  112,  144,  176,  208,  240,  272;
7  |  256,  320,  384,  448,  512,  576,  640;
...
		

Crossrefs

Cf. A001792 (column 1), A053220 (right border). Also:
A014477, row sums;
A036826, partial sums;
A058962, central elements in odd rows;
A045623, second column;
A045891, third column;
A034007, fourth column;
A167667, subdiagonal;
A130129, second subdiagonal.

Programs

  • C
    int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
    
  • Magma
    /* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
  • Mathematica
    t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)

Formula

T(n,k) = T(n-1,k) + T(n-1,k+1).
Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1).

Extensions

More terms from Bruno Berselli, Jan 28 2014

A327916 Triangle T(k, n) read by rows: Array A(k, n) = 2^k*(k + 1 + 2*n), k >= 0, n >= 0, read by antidiagonals upwards.

Original entry on oeis.org

1, 4, 3, 12, 8, 5, 32, 20, 12, 7, 80, 48, 28, 16, 9, 192, 112, 64, 36, 20, 11, 448, 256, 144, 80, 44, 24, 13, 1024, 576, 320, 176, 96, 52, 28, 15, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 11264, 6144, 3328, 1792, 960, 512, 272, 144, 76, 40, 21
Offset: 0

Views

Author

Wolfdieter Lang, Oct 03 2019

Keywords

Comments

The array A(k, n) arises from the following Pascal-type triangles PTodd(k), k >= 0 based on the positive odd integers A005408.
For example, the Pascal-type triangle PTodd(k), for k = 3 is
1 3 5 7
4 8 12
12 20
32
Taken upside-down such triangles become so-called addition towers of height k+1 (Rechenturm in German elementary schools; thanks to my correspondent Bennet D.), starting with any k+1 numbers. Here the positive odd numbers are used.
The sequence s of the final number of these Pascal-type triangles PT(k), for k >= 0, begins 1, 4, 12, 32, ...; s(k) = (k+1)*2^k = A001787(k+1), for k >= 0.
For k -> infinity the left-aligned row sequences build the array A(k, n), with k >= 0 and n >= 0, namely A(k, n) = 2^k*(k + 2*n + 1); this array begins:
k\n 0 1 2 3 4 5 ...
-------------------------------
0: 1 3 5 7 9 11 ... {A005408(n)}
1: 4 8 12 16 20 24 ... {A008586(n+1)}
2: 12 20 28 36 44 52 ... {A017113(n+1)}
3: 32 48 64 80 96 112 ... {A008598(n+2)}
4: 80 112 144 176 208 240 ... {16*A005408(n+2)}
5: 192 256 320 384 448 512 ... {A152691(n+3)}
6: 448 576 704 832 960 1088 ... {64*A005408(n+3)}
...
The sequence s, the first (n=0) column of A, is always the binomial transform of the first (k=0) row in A.
A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j)+1) = 2^k*(k + 1 + 2*n), for k >= 0 and n >= 0.
The corresponding antidiagonal-upwards read triangle is T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k = 0..n.
If the nonnegative integers A001477 are used as k = 0 row of the array Anneg(k, n) = 2^(k-1)*(2*n + k), for k >= 0, n >= 0, with the triangle Tnneg(k, n) = Anneg(k-n, n) = (n + k)*2^(k-n-1), k >= 0, n = 0..k, then the s sequence is snneg(k) = Tnneg(k, 0) = k*2^{k-1} = A001787(k), the binomial transform of the sequence{A001477(n)}_{n>=0}. The triangle Tnneg begins [0], [1, 1], [4, 3, 2], [12, 8, 5, 3], [32, 20, 12, 7, 4], ... . See A062111 and the row-reversed triangle A152920 for other versions.

Examples

			The triangle T(k, n) begins:
   k\n    0    1    2    3   4   5   6   7  8  9 10 ...
  -----------------------------------------------------
   0:     1
   1:     4    3
   2:    12    8    5
   3:    32   20   12    7
   4:    80   48   28   16   9
   5:   192  112   64   36  20  11
   6:   448  256  144   80  44  24  13
   7:  1024  576  320  176  96  52  28  15
   8:  2304 1280  704  384 208 112  60  32 17
   9:  5120 2816 1536  832 448 240 128  68 36 19
  10: 11264 6144 3328 1792 960 512 272 144 76 40 21
  ...
		

Crossrefs

Column sequences without leading zeros are for n=0..9: A001787(n+1), A001792(n+1), A045623(n+2), A045891(n+3), A034007(n+4), A111297(n+3), A159694(n+1), A159695(n+1), A159696(n+1), A159697(n+1).
The sequence of (sub)diagonal k, for k >= 0, is the row k sequence of array A: {(k + 2*n + 1)*2^k}_{k >= 0}.
Row sums: A213569(k+1), k >= 0 (see the J. M. Bergot comments there).

Programs

  • Mathematica
    Table[2^#*(# + 1 + 2 n) &[k - n], {k, 0, 10}, {n, 0, k}] // Flatten (* Michael De Vlieger, Oct 03 2019 *)

Formula

Array A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j) + 1) = 2^k*(k + 1+ 2*n), for k >= 0 and n >= 0.
Triangle T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k = 0..n.
Recurrence: T(k, 0) = (k+1)*2^k = A001787(k+1), for k >= 0, and T(k, n) = T(k, n-1) - T(k-1, n-1), for n >= 1, k >= 1, with T(k, n) = 0 if k < n.
O.g.f. for row polynomials: G(z,x) = Sum_{n=0..k} R(k, x)*z^n =
(1 + x*z*(1 - 4*z))/((1 - 2*z)^2*(1 - x*z)^2).
T(k, 0) = Sum_{n=0..k} binomial(k,n)*T(n, n), k >= 0 (binomial transform).

Extensions

Definition corrected by Georg Fischer, Jul 13 2023

A348407 a(n) = ((n+1)*3*2^(n+1) + 29*2^n + (-1)^n)/9.

Original entry on oeis.org

4, 9, 21, 47, 105, 231, 505, 1095, 2361, 5063, 10809, 22983, 48697, 102855, 216633, 455111, 953913, 1995207, 4165177, 8679879, 18058809, 37515719, 77827641, 161247687, 333680185, 689729991, 1424199225, 2937876935, 6054710841, 12467335623, 25650499129, 52732654023, 108328619577
Offset: 0

Views

Author

Paul Curtz and Thomas Scheuerle, Oct 17 2021

Keywords

Comments

The ratio (count of ones)/(count of zeros) in the binary expansion of a(n) is > 1/2 and <= 5 for all n > 0, this is because the division by 9 adds a repeating pattern 111000... after some binary digits.
This sequence has in its "partial binomial transform" (see formula section) no other constants than 2 and 1 despite of its more complicated looking closed form expression. This transform has a deep connection to the Grünwald-Letnikov fractional derivative if we replace the order of the derivative with the variable x: D^x*f(x).

Crossrefs

Programs

  • Mathematica
    Array[((# + 1)*3*2^(# + 1) + 29*2^# + (-1)^#)/9 &, 33, 0] (* Michael De Vlieger, Oct 19 2021 *)
    LinearRecurrence[{3,0,-4},{4,9,21},40] (* Harvey P. Dale, Aug 12 2023 *)

Formula

a(n) = round(((n+1)*3*2^(n+1) + 29*2^n)/9).
a(n) = 2^(n+2) + A113861(n).
a(n) = 2^(n+2) + n*2^n - A045883(n) = 2^(n+2) + n*2^n - round(((3*n+1)*2^n)/9).
a(n+1) - 2*a(n) = A001045(n+2).
a(n) = A034007(n+3) + A045883(n-1) for n > 0.
A partial binomial transform in two parts:
(Partial means a diagonal in a difference table a(0), a(2)-a(1), ... . This is partial because one diagonal alone is no invertible transform.)
A001787(n+2) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2*n-k)
= (n+2)*2^(n+1).
A052951(n+1) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*(a(1+2*n-k) - a(2*n-k))
= (n+2)*2^(n+1) + 2^n.
The inverse transform:
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(k+2)*2^(k+1)
+ Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*((k+2)*2^(k+1) + 2^k).
From Stefano Spezia, Oct 20 2021: (Start)
G.f.: (4 - 3*x - 6*x^2)/((1 + x)*(1 - 2*x)^2).
a(n) = 3*a(n-1) - 4*a(n-3) for n > 2. (End)
Previous Showing 11-17 of 17 results.