cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 60 results. Next

A351316 Sum of the 10th powers of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 1048577, 1, 1, 1, 1048577, 3486784402, 1, 1, 1048577, 1, 1, 1, 1099512676353, 1, 3486784402, 1, 1048577, 1, 1, 1, 1048577, 95367431640626, 1, 3486784402, 1048577, 1, 1, 1, 1099512676353, 1, 1, 1, 3656161927895954, 1, 1, 1, 1048577, 1, 1, 1, 1048577, 3486784402, 1, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^10 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 21 2024

Examples

			a(16) = 1099512676353; a(16) = Sum_{d^2|16} (d^2)^10 = (1^2)^10 + (2^2)^10 + (4^2)^10 = 1099512676353.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), this sequence (k=10).

Programs

  • Mathematica
    f[p_, e_] := (p^(20*(1 + Floor[e/2])) - 1)/(p^20 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
    Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^10],{n,50}] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^20*x^k^2/(1-x^k^2))) \\ Seiichi Manyama, Feb 12 2022

Formula

a(n) = Sum_{d^2|n} (d^2)^10.
Multiplicative with a(p) = (p^(20*(1+floor(e/2))) - 1)/(p^20 - 1). - Amiram Eldar, Feb 07 2022
G.f.: Sum_{k>0} k^20*x^(k^2)/(1-x^(k^2)). - Seiichi Manyama, Feb 12 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-20).
Sum_{k=1..n} a(k) ~ (zeta(21/2)/21) * n^(21/2). (End)
a(n) = Sum_{d|n} d^10 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 21 2024
a(n) = Sum_{d|n} lambda(d)*d^10*sigma_10(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025

A359967 a(n) = Sum_{d|n, d+1 is square} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 3, 0, 0, 18, 8, 0, 3, 0, 0, 3, 0, 0, 35, 0, 0, 3, 0, 0, 18, 0, 8, 3, 0, 35, 3, 0, 0, 3, 8, 0, 3, 0, 0, 18, 0, 0, 83, 0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 18, 0, 0, 66, 8, 0, 3, 0, 0, 3, 35, 0, 35, 0, 0, 18, 0, 0, 3, 0, 88, 3, 0, 0, 3, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jan 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[IntegerQ[Sqrt[d+1]], d, 0], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 21 2023 *)
  • PARI
    a(n) = sumdiv(n, d, issquare(d+1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=2, sqrtint(N+1), (k^2-1)*x^(k^2-1)/(1-x^(k^2-1)))))

Formula

G.f.: Sum_{k>=2} (k^2-1) * x^(k^2-1)/(1 - x^(k^2-1)).
Sum_{k=1..n} a(k) ~ zeta(3/2)*n^(3/2)/3. - Vaclav Kotesovec, Jan 21 2023

A365172 The sum of divisors d of n such that gcd(d, n/d) is a square.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 21, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 45, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 84, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The number of these divisors is A365171(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), (1 + p^(2*Floor[(e + 1)/4] + 1))*(p^(2*Floor[e/4] + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e%2, (1 + p^(2*((e+1)\4)+1))*(p^(2*(e\4)+2) - 1)/(p^2 - 1), (p^(e+2) - 1)/(p^2 - 1)));}

Formula

Multiplicative with a(p^e) = (p^(e+2) - 1)/(p^2 - 1) if e is even, and (1 + p^(2*floor((e+1)/4) + 1))*(p^(2*floor(e/4)+2) - 1)/(p^2 - 1) if e is odd.
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034448(n), with equality if and only if n is not a biquadrateful number (A046101).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/(2 * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^5)) = 0.696082796052... .

A373439 Numerator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 25, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 25, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Numerator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1 - x^(k^2))).
a(n) is the numerator of Sum_{d^2|n} 1/d^2.
From Amiram Eldar, Jun 26 2024: (Start)
Let f(n) = a(n)/A373440(n). Then:
f(n) is multiplicative with f(p^e) = (p^2 - p^(-2*floor(e/2)))/(p^2-1).
Dirichlet g.f. of f(n): zeta(s) * zeta(2*s+2).
Sum_{k=1..n} f(k) ~ zeta(4) * n. (End)

A373440 Denominator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 18, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 18, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).
a(n) is the denominator of Sum_{d^2|n} 1/d^2.

A380324 The sum of the squares dividing the n-th exponentially odd number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 10, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 10, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e+1) - 1)/(p^2 - 1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1]^2 - 1), 0));}
    list(lim) = select(x -> x > 0, vector(lim, i, s(i)));

Formula

a(n) = A035316(A268335(n)).

A071326 Sum of squares > 1 dividing n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 0, 0, 20, 0, 9, 0, 4, 0, 0, 0, 4, 25, 0, 9, 4, 0, 0, 0, 20, 0, 0, 0, 49, 0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 20, 49, 25, 0, 4, 0, 9, 0, 4, 0, 0, 0, 4, 0, 0, 9, 84, 0, 0, 0, 4, 0, 0, 0, 49, 0, 0, 25, 4, 0, 0, 0, 20, 90, 0, 0, 4, 0, 0, 0, 4, 0, 9, 0, 4, 0, 0, 0, 20, 0, 49, 9, 129
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2002

Keywords

Crossrefs

One less than A035316.

Programs

  • Mathematica
    Array[DivisorSum[#, # &, IntegerQ@ Sqrt@ # &] - 1 &, 100] (* Michael De Vlieger, Nov 17 2017 *)
    f[p_, e_] := (p^(2*(1+Floor[e/2]))-1)/(p^2-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - 1; Array[a, 100] (* Amiram Eldar, May 15 2025 *)
  • PARI
    A071326(n) = sumdiv(n,d,(d>1)*issquare(d)*d); \\ Antti Karttunen, Nov 17 2017

Formula

a(n) = A035316(n)-1.
Sum_{d|n, d>1} A010052(d). - Antti Karttunen, Nov 17 2017

Extensions

More terms from Antti Karttunen, Nov 17 2017

A276559 Expansion of Sum_{k>=1} k^2*x^k^2/(1 - x^k^2) * Product_{k>=1} 1/(1 - x^k^2).

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 14, 24, 36, 40, 44, 60, 78, 84, 90, 128, 153, 180, 190, 240, 273, 308, 322, 384, 475, 520, 567, 644, 754, 810, 868, 992, 1122, 1258, 1330, 1548, 1702, 1862, 1950, 2200, 2460, 2646, 2838, 3124, 3510, 3726, 3948, 4320, 4802, 5200, 5457, 6032, 6572, 7128, 7425, 8064, 8778, 9454, 9971, 10680
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2017

Keywords

Comments

Sum of all parts of all partitions of n into squares.
Convolution of the sequences A001156 and A035316.

Examples

			a(8) = 24 because we have [4, 4], [4, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1] and 3*8 = 24.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], (s->
          `if`(s>n, 0, (p->p+[0, p[1]*s])(b(n-s, i))))(i^2)+b(n, i-1))
        end:
    a:= n-> b(n, isqrt(n))[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 19 2018
  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 - x^k^2), {k, 1, nmax}] Product[1/(1 - x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 60; Rest[CoefficientList[Series[x D[Product[1/(1 - x^k^2), {k, 1, nmax}], x], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=1} k^2*x^k^2/(1 - x^k^2) * Product_{k>=1} 1/(1 - x^k^2).
G.f.: x*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k^2).
a(n) = n * A001156(n).
a(n) = n * Sum_{k=1..n} A243148(n,k). - Alois P. Heinz, Sep 19 2018

A328373 Expansion of Sum_{k>=1} x^(k^2) * (1 + x^(2*k^2)) / (1 - x^(2*k^2))^2.

Original entry on oeis.org

1, 0, 3, 1, 5, 0, 7, 0, 10, 0, 11, 3, 13, 0, 15, 1, 17, 0, 19, 5, 21, 0, 23, 0, 26, 0, 30, 7, 29, 0, 31, 0, 33, 0, 35, 10, 37, 0, 39, 0, 41, 0, 43, 11, 50, 0, 47, 3, 50, 0, 51, 13, 53, 0, 55, 0, 57, 0, 59, 15, 61, 0, 70, 1, 65, 0, 67, 17, 69, 0, 71, 0, 73, 0, 78, 19, 77, 0, 79, 5, 91
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Comments

Sum of odd divisors d of n such that n/d is square.

Crossrefs

Cf. A000593, A010052, A035316, A036554 (positions of 0's), A056911 (fixed points), A076752, A193356, A328372.

Programs

  • Magma
    a:=[];for n in [1..81] do  v:=[d:d in Divisors(n)| IsOdd(d) and IsSquare(n div d)]; if #v ne 0  then Append(~a,&+v); else Append(~a,0); end if; end for; a; // Marius A. Burtea, Oct 14 2019
  • Mathematica
    nmax = 81; CoefficientList[Series[Sum[x^(k^2) (1 + x^(2 k^2))/(1 - x^(2 k^2))^2, {k, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, OddQ[#] && IntegerQ[(n/#)^(1/2)] &], {n, 1, 81}]
    f[p_, e_] := If[p == 2, Boole @ EvenQ[e], If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), (p^(e + 2) - p)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 16 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d%2) && issquare(n/d), d)); \\ Michel Marcus, Oct 14 2019
    

Formula

G.f.: Sum_{k>=1} (2*k - 1) * (theta_3(x^(2*k - 1)) - 1) / 2.
G.f.: Sum_{i>=1} Sum_{j>=1} phi(i) * x^(i*j^2) / (1 + x^(i*j^2)).
Dirichlet g.f.: (1 - 2^(1 - s)) * zeta(s-1) * zeta(2*s).
a(n) = Sum_{d|n} A193356(d) * A010052(n/d).
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 360. - Vaclav Kotesovec, Oct 14 2019
Multiplicative with a(2^e) = 0 if e is odd, and 1 if e is even, and for p > 2, a(p^e) = (p^(e + 2) - p)/(p^2 - 1) if e is odd, and (p^(e + 2) - 1)/(p^2 - 1) if e is even. - Amiram Eldar, Oct 16 2020

A347398 Expansion of g.f. Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 28, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 28, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 28, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 32, 1, 1, 1, 5
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2021

Keywords

Examples

			1^1 | 108, 2^2 | 108 and 3^3 | 108. So a(108) = 1^1 + 2^2 + 3^3 = 32.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n%k^k==0)*k^k);

Formula

a(n) = A347397(n) - A347397(n-1) for n > 1.
a(n) = Sum_{k=1..n, k^k | n} k^k.
Previous Showing 41-50 of 60 results. Next