cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A050982 5-idempotent numbers.

Original entry on oeis.org

1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5

Views

Author

Keywords

Comments

Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.

Crossrefs

Programs

Formula

a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)

A172362 a(n) = binomial(n+10, 10)*3^n.

Original entry on oeis.org

1, 33, 594, 7722, 81081, 729729, 5837832, 42532776, 287096238, 1818276174, 10909657044, 62482581252, 343654196886, 1824010737318, 9380626649064, 46903133245320, 228652774570935, 1089463220014455, 5084161693400790
Offset: 0

Views

Author

Zerinvary Lajos, Feb 01 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=10) of 4 objects: u, v, z, x with repetition allowed, containing exactly ten, (10) u's.

Crossrefs

Programs

  • Magma
    [3^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(binomial(n+10, 10)*3^n, n=0..30);
  • Mathematica
    Table[Binomial[n + 10, 10]*3^n, {n, 0, 20}]

Formula

G.f.: 1/(1-3*x)^11. - Vincenzo Librandi, Oct 15 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 261617/42 - 15360*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 7864320*log(4/3) - 47510881/21. (End)

A050988 6-idempotent numbers.

Original entry on oeis.org

1, 42, 1008, 18144, 272160, 3592512, 43110144, 480370176, 5043886848, 50438868480, 484213137408, 4489976365056, 40409787285504, 354362750042112, 3037395000360960, 25514118003032064, 210491473525014528, 1708695490967764992, 13669563927742119936, 107917609955858841600
Offset: 6

Views

Author

Keywords

Comments

Number of n-permutations of 7 objects: s, t, u, v, z, x, y with repetition allowed, containing exactly six u's. - Zerinvary Lajos, Jun 16 2008

Crossrefs

Programs

Formula

a(n) = binomial(n,6)*6^(n-6).
G.f.: x^6/(1-6*x)^7. - Zerinvary Lajos, Aug 09 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=6} 1/a(n) = 102561/5 - 112500*log(6/5).
Sum_{n>=6} (-1)^n/a(n) = 605052*log(7/6) - 466341/5. (End)

A081143 5th binomial transform of (0,0,0,1,0,0,0,0,......).

Original entry on oeis.org

0, 0, 0, 1, 20, 250, 2500, 21875, 175000, 1312500, 9375000, 64453125, 429687500, 2792968750, 17773437500, 111083984375, 683593750000, 4150390625000, 24902343750000, 147857666015625, 869750976562500, 5073547363281250
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, four-fold convolution of A000351 (powers of 5).
With a different offset, number of n-permutations (n=4)of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly three u's. Example: a(4)=20 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu, xuuu, uuuy, uuyu, uyuu and yuuu. - Zerinvary Lajos, Jun 03 2008

Crossrefs

Programs

  • Magma
    [5^(n-3) * Binomial(n, 3): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
    
  • Maple
    seq(binomial(n,3)*5^(n-3), n=0..25); # Zerinvary Lajos, Jun 03 2008
  • Mathematica
    CoefficientList[Series[x^3/(1-5x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{20,-150,500,-625}, {0,0,0,1}, 30] (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    vector(31, n, my(m=n-1); 5^(m-3)*binomial(m,3)) \\ G. C. Greubel, Mar 05 2020
  • Sage
    [lucas_number2(n, 5, 0)*binomial(n,3)/5^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = 20*a(n-1) - 150*a(n-2) + 500*a(n-3) - 625*a(n-4), with a(0)=a(1)=a(2)=0, a(3)=1.
a(n) = 5^(n-3)*binomial(n,3).
G.f.: x^3/(1-5*x)^4.
E.g.f.: x^3*exp(x)/6. - G. C. Greubel, Mar 05 2020
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 240*log(5/4) - 105/2.
Sum_{n>=3} (-1)^(n+1)/a(n) = 540*log(6/4) - 195/2. (End)

A059300 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1;
1,  2;
1,  6,   3;
1, 12,  24,    4;
1, 20,  90,   80,    5;
1, 30, 240,  540,  240,   6;
1, 42, 525, 2240, 2835, 672, 7;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300. Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc. Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Mathematica
    t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017

Formula

T(n,k) = binomial(n+1,n-k+1)*(n-k+1)^k. - R. J. Mathar, Mar 14 2013

A141054 8-idempotent numbers: a(n) = binomial(n+8,8)*8^n.

Original entry on oeis.org

1, 72, 2880, 84480, 2027520, 42172416, 787218432, 13495173120, 215922769920, 3262832967680, 46984794734592, 649244436332544, 8656592484433920, 111869810568069120, 1406363332855726080, 17251390216363573248, 207016682596362878976, 2435490383486622105600
Offset: 0

Views

Author

Zerinvary Lajos, Aug 01 2008

Keywords

Comments

With a different offset, number of n-permutations of 9 objects:
p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight (8) u's. Example: a(1)=72 because we have
uuuuuuuup, uuuuuuupu, uuuuuupuu, uuuuupuuu, uuuupuuuu, uuupuuuuu, uupuuuuuu, upuuuuuuu, puuuuuuuu,
uuuuuuuur, uuuuuuuru, uuuuuuruu, uuuuuruuu, uuuuruuuu, uuuruuuuu, uuruuuuuu, uruuuuuuu, ruuuuuuuu,
uuuuuuuus, uuuuuuusu, uuuuuusuu, uuuuusuuu, uuuusuuuu, uuusuuuuu, uusuuuuuu, usuuuuuuu, suuuuuuuu,
uuuuuuuut, uuuuuuutu, uuuuuutuu, uuuuutuuu, uuuutuuuu, uuutuuuuu, uutuuuuuu, utuuuuuuu, tuuuuuuuu,
uuuuuuuuv, uuuuuuuvu, uuuuuuvuu, uuuuuvuuu, uuuuvuuuu, uuuvuuuuu, uuvuuuuuu, uvuuuuuuu, vuuuuuuuu,
uuuuuuuuz, uuuuuuuzu, uuuuuuzuu, uuuuuzuuu, uuuuzuuuu, uuuzuuuuu, uuzuuuuuu, uzuuuuuuu, zuuuuuuuu,
uuuuuuuux, uuuuuuuxu, uuuuuuxuu, uuuuuxuuu, uuuuxuuuu, uuuxuuuuu, uuxuuuuuu, uxuuuuuuu, xuuuuuuuu,
uuuuuuuuy, uuuuuuuyu, uuuuuuyuu, uuuuuyuuu, uuuuyuuuu, uuuyuuuuu, uuyuuuuuu, uyuuuuuuu, yuuuuuuuu.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(binomial(n+8,8)*8^n, n=0..17);
  • Mathematica
    Table[Binomial[n + 8, 8] 8^n, {n, 0, 15}] (* Michael De Vlieger, Jul 24 2017 *)
  • PARI
    vector(15,n,binomial(n+7,8)*8^(n-1)) \\ Derek Orr, Jul 24 2017

Formula

a(n) = binomial(n+8,8)*8^n.
G.f.: 1/(1-8*x)^9. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 738990736/105 - 52706752*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 306110016*log(9/8) - 1261909808/35. (End)

A050989 7-idempotent numbers.

Original entry on oeis.org

1, 56, 1764, 41160, 792330, 13311144, 201885684, 2826399576, 37096494435, 461645264080, 5493578642552, 62926446269232, 697434779483988, 7510836086750640, 78863778910881720, 809668130151718992, 8147285559651672357, 80514351413028291528, 782778416515552834300
Offset: 7

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [7^(n-7)* Binomial(n, 7): n in [7..30]]; // Vincenzo Librandi, Oct 16 2011
  • Maple
    seq(binomial(n, 7)*7^(n-7), n=7..33); # Zerinvary Lajos, Aug 01 2008
  • Mathematica
    LinearRecurrence[{56,-1372,19208,-168070,941192,-3294172,6588344,-5764801}, {1,56,1764,41160,792330,13311144,201885684,2826399576},20] (* Harvey P. Dale, May 31 2014 *)
  • PARI
    a(n)=binomial(n, 7)*7^(n-7) \\ Charles R Greathouse IV, Sep 03 2011
    

Formula

a(n) = C(n, 7)*7^(n-7).
G.f.: x^7/(1-7*x)^8.
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=7} 1/a(n) = 2286144*log(7/6) - 10572289/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 12845056*log(8/7) - 51456517/30. (End)

A059298 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

The inverse triangle is the signed version 1,-2,1,9,-6,1,.. of triangle A061356. - Peter Luschny, Mar 13 2009
T(n,k) is the sum of the products of the cardinality of the blocks (cells) in the set partitions of {1,2,..,n} into exactly k blocks.
From Peter Bala, Jul 22 2014: (Start)
Exponential Riordan array [(1+x)*exp(x), x*exp(x)].
Let M = A093375, the exponential Riordan array [(1+x)*exp(x), x], and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... - see the Example section. (End)
The Bell transform of n+1. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1          \/1        \/1        \      /1           \
|2  1       ||0 1      ||0 1      |      |2  1        |
|3  4  1    ||0 2 1    ||0 0 1    |... = |3  6  1     |
|4  9  6 1  ||0 3 4 1  ||0 0 2 1  |      |4 24 12  1  |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1|      |5 80 90 20 1|
|...        ||...      ||...      |      |...         | (End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248. A093375.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
  • Mathematica
    t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
    

A099097 Riordan array (1, 3+x).

Original entry on oeis.org

1, 0, 3, 0, 1, 9, 0, 0, 6, 27, 0, 0, 1, 27, 81, 0, 0, 0, 9, 108, 243, 0, 0, 0, 1, 54, 405, 729, 0, 0, 0, 0, 12, 270, 1458, 2187, 0, 0, 0, 0, 1, 90, 1215, 5103, 6561, 0, 0, 0, 0, 0, 15, 540, 5103, 17496, 19683, 0, 0, 0, 0, 0, 1, 135, 2835, 20412, 59049, 59049, 0, 0, 0, 0, 0, 0, 18, 945, 13608, 78732, 196830, 177147
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008

Examples

			Triangle begins:
  1;
  0, 3;
  0, 1, 9;
  0, 0, 6, 27;
  0, 0, 1, 27,  81;
  0, 0, 0,  9, 108, 243;
  ...
		

Crossrefs

Cf. A027465.
Diagonals are of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Mathematica
    Table[3^(2*k-n)*Binomial[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 19 2021 *)
  • Sage
    flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021

Formula

Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
G.f.: 1/(1 - 3*y*x - y*x^2). - Philippe Deléham, Nov 21 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A006190(n+1), A135030(n+1), A181353(n+1) for x = 0,1,2,3 respectively. - Philippe Deléham, Nov 21 2011

A120981 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k vertices of outdegree 1 (n >= 0, k >= 0).

Original entry on oeis.org

1, 0, 3, 3, 0, 9, 1, 27, 0, 27, 18, 12, 162, 0, 81, 15, 270, 90, 810, 0, 243, 138, 270, 2430, 540, 3645, 0, 729, 189, 2898, 2835, 17010, 2835, 15309, 0, 2187, 1218, 4536, 34776, 22680, 102060, 13608, 61236, 0, 6561, 2280, 32886, 61236, 312984, 153090, 551124
Offset: 0

Views

Author

Emeric Deutsch, Jul 21 2006

Keywords

Comments

A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.

Examples

			T(2,0)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q.
Triangle starts:
   1;
   0,   3;
   3,   0,   9;
   1,  27,   0,  27;
  18,  12, 162,   0, 81;
  15, 270,  90, 810,  0, 243;
		

Crossrefs

Diagonals include A129530, A036216.

Programs

  • Maple
    T:=proc(n,k) if k<=n then (1/(n+1))*binomial(n+1,k)*sum(3^(3*j-n+2*k)*binomial(n+1-k,j)*binomial(j,n-k-2*j),j=0..n+1-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := (1/(n+1))*Binomial[n+1, k]*Sum[3^(2k - n + 3j)*Binomial[n + 1 - k, j]*Binomial[j, n - k - 2j], {j, 0, n - k + 1}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2018 *)
  • PARI
    T(n,k) = binomial(n+1, k)*sum(j=0, n+1-k, 3^(2*k-n+3*j)*binomial(n+1-k, j)*binomial(j, n-k-2*j))/(n+1); \\ Andrew Howroyd, Nov 06 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n + 1, k)*sum([3**(2*k - n + 3*j)*binomial(n + 1 - k, j)*binomial(j, n - k - 2*j) for j in range(n + 2 - k)])//(n + 1)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017

Formula

T(n,0) = A120984(n).
Sum_{k>=1} k*T(n,k) = 3*binomial(3n,n-1) = 3*A004319(n).
T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=0..n+1-k} 3^(2k-n+3j)*binomial(n+1-k,j)*binomial(j,n-k-2j).
G.f.: G=G(t,z) satisfies G = 1 + 3tzG + 3z^2*G^2 + z^3*G^3.
Previous Showing 11-20 of 25 results. Next