cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A317497 Triangle T(n,k) = 3*T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.

Original entry on oeis.org

1, 3, 9, 27, 1, 81, 6, 243, 27, 729, 108, 1, 2187, 405, 9, 6561, 1458, 54, 19683, 5103, 270, 1, 59049, 17496, 1215, 12, 177147, 59049, 5103, 90, 531441, 196830, 20412, 540, 1, 1594323, 649539, 78732, 2835, 15, 4782969, 2125764, 295245, 13608, 135, 14348907, 6908733, 1082565, 61236, 945, 1
Offset: 0

Views

Author

Zagros Lalo, Jul 31 2018

Keywords

Comments

The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.)
The coefficients in the expansion of 1/(1-3x-x^3) are given by the sequence generated by the row sums.
The row sums give A052541.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.1038034027355..., when n approaches infinity.

Examples

			Triangle begins:
         1;
         3;
         9;
        27,        1;
        81,        6;
       243,       27;
       729,      108,       1;
      2187,      405,       9;
      6561,     1458,      54;
     19683,     5103,     270,      1;
     59049,    17496,    1215,     12;
    177147,    59049,    5103,     90;
    531441,   196830,   20412,    540,    1;
   1594323,   649539,   78732,   2835,   15;
   4782969,  2125764,  295245,  13608,  135;
  14348907,  6908733, 1082565,  61236,  945,  1;
  43046721, 22320522, 3897234, 262440, 5670, 18;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366

Crossrefs

Row sums give A052541.
Cf. A000244 (column 0), A027471 (column 1), A027472 (column 2), A036216 (column 3), A036217 (column 4).
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), A304249 (q=2), this sequence (q=3), A318773 (q=4).

Programs

  • GAP
    Flat(List([0..16],n->List([0..Int(n/3)],k->3^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Aug 01 2018
    
  • Magma
    [3^(n-3*k)*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // G. C. Greubel, May 12 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k] = 3^(n-3k)(n-2k)!/((n-3k)! k!); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]//Flatten
    T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3 T[n-1, k] + T[n-3, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}]//Flatten
  • Sage
    flatten([[3^(n-3*k)*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # G. C. Greubel, May 12 2021

Formula

T(n,k) = 3^(n-3*k) * (n-2*k)!/(k! * (n-3*k)!) where n is a nonnegative integer and k = 0..floor(n/3).

A059299 Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1,
1,  0,
1,  2,   0,
1,  6,   3,    0,
1, 12,  24,    4,    0,
1, 20,  90,   80,    5,   0,
1, 30, 240,  540,  240,   6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T := (n, k) -> binomial(n, k) * (n - k)^k:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017

Extensions

Name corrected by Peter Luschny, Nov 12 2023

A217629 Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n.

Original entry on oeis.org

1, 3, 1, 9, 6, 2, 27, 27, 18, 6, 81, 108, 108, 72, 24, 243, 405, 540, 540, 360, 120, 729, 1458, 2430, 3240, 3240, 2160, 720, 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040, 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2012

Keywords

Comments

Triangle formed by the derivatives of x^n evaluated at x=3.
Sum(T(n,k), k=0..n) = A053486(n) (see the Formula section of A053486). Also:
first column: A000244;
second column: A027471;
third column: 2*A027472;
fourth column: 6*A036216;
fifth column: 24*A036217.

Examples

			Triangle begins:
1;
3,     1;
9,     6,     2;
27,    27,    18,     6;
81,    108,   108,    72,     24;
243,   405,   540,    540,    360,    120;
729,   1458,  2430,   3240,   3240,   2160,    720;
2187,  5103,  10206,  17010,  22680,  22680,   15120,   5040;
6561,  17496, 40824,  81648,  136080, 181440,  181440,  120960,  40320; etc.
		

Crossrefs

Programs

  • Magma
    [Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]];
  • Mathematica
    Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]]

Formula

T(n,k) = 3^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(3x)*x^k.

A318773 Triangle T(n,k) = 3*T(n-1,k) + T(n-4,k-1) for k = 0..floor(n/4), with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows.

Original entry on oeis.org

1, 3, 9, 27, 81, 1, 243, 6, 729, 27, 2187, 108, 6561, 405, 1, 19683, 1458, 9, 59049, 5103, 54, 177147, 17496, 270, 531441, 59049, 1215, 1, 1594323, 196830, 5103, 12, 4782969, 649539, 20412, 90, 14348907, 2125764, 78732, 540, 43046721, 6908733, 295245, 2835, 1, 129140163, 22320522, 1082565, 13608, 15
Offset: 0

Views

Author

Zagros Lalo, Sep 04 2018

Keywords

Comments

The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n) and along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in center-justified triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.)
The coefficients in the expansion of 1/(1-3*x-x^4) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.035744112294..., when n approaches infinity.

Examples

			Triangle begins:
          1;
          3;
          9;
         27;
         81,        1;
        243,        6;
        729,       27;
       2187,      108;
       6561,      405,       1;
      19683,     1458,       9;
      59049,     5103,      54;
     177147,    17496,     270;
     531441,    59049,    1215,     1;
    1594323,   196830,    5103,    12;
    4782969,   649539,   20412,    90;
   14348907,  2125764,   78732,   540;
   43046721,  6908733,  295245,  2835,   1;
  129140163, 22320522, 1082565, 13608,  15;
  387420489, 71744535, 3897234, 61236, 135;
  ...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Row sums give A052917.
Cf. A000244 (column 0), A027471 (column 1), A027472 (column 2), A036216 (column 3).
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), A304249 (q=2), A317497 (q=3), this sequence (q=4).

Programs

  • Magma
    [3^(n-4*k)*Binomial(n-3*k,k): k in [0..Floor(n/4)], n in [0..24]]; // G. C. Greubel, May 12 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k] = 3^(n-4k)*(n-3k)!/((n-4k)! k!); Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]} ]//Flatten
    T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3T[n-1, k] + T[n-4, k-1]]; Table[T[n, k], {n, 0, 17}, {k, 0, Floor[n/4]}]//Flatten
  • Sage
    flatten([[3^(n-4*k)*binomial(n-3*k,k) for k in (0..n//4)] for n in (0..24)]) # G. C. Greubel, May 12 2021

Formula

T(n,k) = 3^(n-4*k) * (n-3*k)!/(k! * (n-4*k)!) where n >= 0 and 0 <= k <= floor(n/4).

A129003 a(n) = (n^3 + n^2)*3^n.

Original entry on oeis.org

6, 108, 972, 6480, 36450, 183708, 857304, 3779136, 15943230, 64953900, 257217444, 994857552, 3772168218, 14061928860, 51656065200, 187339329792, 671787127926, 2384960530284, 8391527791740, 29288988968400, 101486346775506
Offset: 1

Views

Author

Mohammad K. Azarian, May 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3+n^2)*3^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[6,108,972,6480]; [n le 4 select I[n] else 12*Self(n-1)-54*Self(n-2)+108*Self(n-3)-81*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    LinearRecurrence[{12, -54, 108, -81}, {6, 108, 972, 6480}, 30] (* Vincenzo Librandi, Feb 12 2013 *)

Formula

G.f.: 6*x*(1+6*x)/(1-3*x)^4. - R. J. Mathar, Dec 19 2008
a(n) = 12*a(n-1)-54*a(n-2)+108*a(n-3)-81*a(n-4). - Vincenzo Librandi, Feb 12 2013
a(n) = 6*(A036216(n-1)+6*A036216(n-2)), with A036216(-1)=0. - Bruno Berselli, Feb 12 2013
Previous Showing 21-25 of 25 results.