A120910
Triangle read by rows: T(n,k) is the number of ternary words of length n having k levels (n >= 1, 0 <= k <= n-1). A level is a pair of identical consecutive letters.
Original entry on oeis.org
3, 6, 3, 12, 12, 3, 24, 36, 18, 3, 48, 96, 72, 24, 3, 96, 240, 240, 120, 30, 3, 192, 576, 720, 480, 180, 36, 3, 384, 1344, 2016, 1680, 840, 252, 42, 3, 768, 3072, 5376, 5376, 3360, 1344, 336, 48, 3, 1536, 6912, 13824, 16128, 12096, 6048, 2016, 432, 54, 3, 3072
Offset: 1
T(3,1)=12 because we have 001,002,011,022,100,110,112,122,200,211,220 and 221.
Triangle starts:
3;
6, 3
12, 12, 3;
24, 36, 18, 3;
48, 96, 72, 24, 3;
-
T:=(n,k)->3*2^(n-k-1)*binomial(n-1,k): for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
sol=Solve[{a==v(z^2+a z),b==v(z^2+b z),c==v(z^2+c z)},{a,b,c}];f[z_,u_]:=1/(1-3z-a-b-c)/.sol/.v->u-1;nn=10;Drop[Map[Select[#,#>0&]&,Level[CoefficientList[Series[f[z,u],{z,0,nn}],{z,u}],{2}]],1]//Grid (* Geoffrey Critzer, May 19 2014 *)
A178756
Rectangular array T(n,k) = binomial(n,2)*k*n^(k-1) read by antidiagonals.
Original entry on oeis.org
1, 4, 3, 12, 18, 6, 32, 81, 48, 10, 80, 324, 288, 100, 15, 192, 1215, 1536, 750, 180, 21, 448, 4374, 7680, 5000, 1620, 294, 28, 1024, 15309, 36864, 31250, 12960, 3087, 448, 36, 2304, 52488, 172032, 187500, 97200, 28812, 5376, 648, 45
Offset: 2
1,4,12,32,80,192,448,1024
3,18,81,324,1215,4374,15309,52488
6,48,288,1536,7680,36864,172032,786432
10,100,750,5000,31250,187500,1093750,6250000
15,180,1620,12960,97200,699840,4898880,33592320
-
T:=Flat(List([3..10], n-> List([2..n-1], k-> Binomial(k,2)*(n-k)* k^(n-k-1) ))); # G. C. Greubel, Jan 24 2019
-
[[Binomial(k,2)*(n-k)*k^(n-k-1): k in [2..n-1]]: n in [3..10]]; // G. C. Greubel, Jan 24 2019
-
T:= (n, k)-> binomial(n, 2)*k*n^(k-1):
seq(seq(T(n, 1+d-n), n=2..d), d=2..14); # Alois P. Heinz, Jan 17 2013
-
Table[Range[8]! Rest[CoefficientList[Series[Binomial[n,2]x Exp[n x],{x,0,8}],x]],{n,2,10}]//Grid
T[n_, k_]:= Binomial[n, 2]*k*n^(k-1); Table[T[k,n-k], {n,2,10}, {k, 2, n-1}]//Flatten (* G. C. Greubel, Jan 24 2019 *)
-
{T(n,k) = binomial(n,2)*k*n^(k-1)};
for(n=2,10, for(k=2,n-1, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 24 2019
-
[[binomial(k,2)*(n-k)*k^(n-k-1) for k in (2..n-1)] for n in (3..10)] # G. C. Greubel, Jan 24 2019
A265121
Integers k such that k*3^k + 2 is prime.
Original entry on oeis.org
0, 1, 3, 5, 11, 15, 17, 153, 169, 273, 317, 373, 923, 1403, 1969, 2349, 7809, 10313, 12291, 24865, 41289
Offset: 1
a(3) = 3 because 3^3 * 3 + 2 = 83 is prime.
-
[n: n in [0..400] | IsPrime(n*3^n+2)]; // Vincenzo Librandi, Dec 02 2015
-
Select[Range[0, 10000], PrimeQ[# 3^# + 2] &] (* Vincenzo Librandi, Dec 02 2015 *)
-
for(n=0, 1e6, if(ispseudoprime(3^n*n + 2), print1(n, ", ")));
A289399
Total path length of the complete ternary tree of height n.
Original entry on oeis.org
0, 3, 21, 102, 426, 1641, 6015, 21324, 73812, 250959, 841449, 2790066, 9167358, 29893557, 96855123, 312088728, 1000836264, 3196219035, 10169787837, 32252755710, 101988443730, 321655860993, 1012039172391, 3177332285412, 9955641160956, 31137856397031
Offset: 0
The complete ternary tree of height two consists of one root node (at depth 0), three children of the root (at depth 1) and 9 leaf nodes (at depth 2). Thus a(2) = 0 + 3*1 + 9*2 = 21.
A273893
Denominator of n/3^n.
Original entry on oeis.org
1, 3, 9, 9, 81, 243, 243, 2187, 6561, 2187, 59049, 177147, 177147, 1594323, 4782969, 4782969, 43046721, 129140163, 43046721, 1162261467, 3486784401, 3486784401, 31381059609, 94143178827, 94143178827, 847288609443, 2541865828329, 282429536481, 22876792454961
Offset: 0
A352081
Numbers of the form k*p^k, where k>1 and p is a prime.
Original entry on oeis.org
8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1
8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
Subsequences:
A036289 \ {0, 2},
A036290 \ {0, 3},
A036291 \ {0, 5},
A036293 \ {0, 7},
A073113 \ {2},
A079704,
A100042,
A104126.
-
addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]
A004142
a(n) = n*(3^n - 2^n).
Original entry on oeis.org
0, 1, 10, 57, 260, 1055, 3990, 14413, 50440, 172539, 580250, 1926089, 6328140, 20619703, 66732190, 214742085, 687698960, 2193154547, 6968850210, 22073006401, 69714716500, 219623377071, 690291036710
Offset: 0
-
Table[n(3^n-2^n),{n,0,30}] (* or *) LinearRecurrence[{10,-37,60,-36},{0,1,10,57},30] (* Harvey P. Dale, Sep 04 2023 *)
A134574
Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
Offset: 1
a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k| 1 2 3 4 5 6 7 ...
---|--------------------------------------------------------------
1 | 1 2 3 4 5 6 7 ...
2 | 2 8 18 32 50 72 98 ...
3 | 3 24 81 192 375 648 1029 ...
4 | 4 64 324 1024 2500 5184 9604 ...
5 | 5 160 1215 5120 15625 38880 84035 ...
6 | 6 384 4374 24576 93750 279936 705894 ...
7 | 7 896 15309 114688 546875 1959552 5764801 ...
8 | 8 2048 52488 524288 3125000 13436928 46118408 ...
9 | 9 4608 177147 2359296 17578125 90699264 363182463 ...
... - _Franck Maminirina Ramaharo_, Aug 07 2018
Cf. a(n, 1) = a(1, k) =
A000027(n); a(n, 2) =
A036289(n); a(n, 3) =
A036290(n); a(n, 4) =
A018215(n); a(n, 5) =
A036291(n); a(n, 6) =
A036292(n); a(n, 7) =
A036293(n); a(n, 8) =
A036294(n); a(2, k) =
A001105(k); a(3, k) =
A117642(k); a(n, n) =
A007778(n); a(n, n+1) =
A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] =
A062807(n).
-
t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)
Comments