cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A049065 Record primes reached in A048986.

Original entry on oeis.org

2, 3, 31, 179, 12007, 1564237, 17320726789571, 401278664296369, 576312045441408907, 37246812772043701411753149215934377, 3690727229000499480592573891534356177653018575120050845976045596834749951228879
Offset: 1

Views

Author

Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu)

Keywords

Comments

The value 37246812772043701411753149215934377 is the base-2 home prime for 922 and occurs after 66 steps. The value 3690727229000499480592573891534356177653018575120050845976045596834749951228879 is the base-2 home prime for 1345 and occurs after 131 steps. The next term (home prime for 2295) contains at least 124 digits. Computation of further terms involves large factorizations. - Sean A. Irvine, Aug 04 2005 [corrected Jul 17 2021]

Crossrefs

Extensions

a(10)-a(11) from Sean A. Irvine, Aug 04 2005
a(10) corrected by Sean A. Irvine, Jul 17 2021

A080695 Concatenation of the prime power factors (with maximal exponent) of n; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 4, 5, 23, 7, 8, 9, 25, 11, 43, 13, 27, 35, 16, 17, 29, 19, 45, 37, 211, 23, 83, 25, 213, 27, 47, 29, 235, 31, 32, 311, 217, 57, 49, 37, 219, 313, 85, 41, 237, 43, 411, 95, 223, 47, 163, 49, 225, 317, 413, 53, 227, 511, 87, 319, 229, 59, 435, 61, 231, 97, 64
Offset: 1

Views

Author

Vladeta Jovovic, Mar 03 2003

Keywords

Comments

a(n) = n iff n is 1 or a prime power; otherwise, a(n) > n. - Ivan Neretin, May 31 2016

Examples

			a(67500) = a(2^2*3^3*5^4) = a(4*27*625) = 427625.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@Flatten@IntegerDigits[#[[1]]^#[[2]] & /@ FactorInteger[n]], {n, 64}] (* Ivan Neretin, May 31 2016 *)

Extensions

Edited by Charles R Greathouse IV, Apr 29 2010

A119603 Merging prime factors of n-th composite number.

Original entry on oeis.org

22, 23, 222, 33, 25, 223, 27, 35, 2222, 233, 225, 37, 211, 2223, 55, 213, 333, 227, 235, 22222, 311, 217, 57, 2233, 219, 313, 2225, 237, 2211, 335, 223, 22223, 77, 255, 317, 2213, 2333, 511, 2227, 319, 229, 2235, 231, 337, 222222, 513, 2311, 2217, 323, 257
Offset: 1

Views

Author

Zak Seidov, Jun 03 2006

Keywords

Comments

Rule "replace n-th composite number by concatenation of its prime factors" in A037271; composite numbers A002808.

Examples

			a(6)=223 because 6th composite number is 12: A002808(6)=12, then 12=2*2*3 and merging prime factors we get a(6)=223.
		

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[!PrimeQ[n],Sow[FromDigits@Flatten[Table[IntegerDigits[ #[[1]]],{#[[2]]}]&/@FactorInteger@(n)]]],{n,2,115}]][[2,1]]

Formula

a(n) = A037276(A002808(n)). - Jason Yuen, Jun 28 2025

A340393 Treat the prime factors of n in ascending order as digits of a number in base "greatest prime factor + 1" and convert this number back to a decimal number.

Original entry on oeis.org

2, 3, 8, 5, 11, 7, 26, 15, 17, 11, 43, 13, 23, 23, 80, 17, 47, 19, 89, 31, 35, 23, 171, 35, 41, 63, 151, 29, 95, 31, 242, 47, 53, 47, 175, 37, 59, 55, 521, 41, 159, 43, 323, 131, 71, 47, 683, 63, 107, 71, 433, 53, 191, 71, 1175, 79, 89, 59, 527, 61, 95, 223, 728
Offset: 2

Views

Author

S. Brunner, Jan 06 2021

Keywords

Examples

			Some examples for the calculation of a(n):
(For digits 10,11...36 the letters A,B...Z are used.)
    n -> prime factors     -> a(n)(base) -> a(n)(base 10)
    6 -> 2 * 3             ->   23 (4)   ->   11
   20 -> 2 * 2 * 5         ->  225 (6)   ->   89
   33 -> 3 * 11            ->   3B (12)  ->   47
   56 -> 2 * 2 * 2 * 7     -> 2227 (8)   -> 1175
   62 -> 2 * 31            ->   2U (32)  ->   95
   72 -> 2 * 2 * 2 * 3 * 3 ->22233 (4)   ->  687
  100 -> 2 * 2 * 5 * 5     -> 2255 (6)   ->  539
  910 -> 2 * 5 * 7 * 13    -> 257D (14)  -> 6579
		

Crossrefs

Cf. A037274 (home primes), A037276, A340394.

Programs

  • Maple
    a:= n-> (l-> (m-> add(l[-i]*m^(i-1), i=1..nops(l)))(1+
        max(l)))(map(i-> i[1]$i[2], sort(ifactors(n)[2]))):
    seq(a(n), n=2..77);  # Alois P. Heinz, Jan 09 2021
  • PARI
    a(n) = my(f=factor(n), list=List()); for (k=1, #f~, for (j=1, f[k, 2], listput(list, f[k,1]))); fromdigits(Vec(list), vecmax(f[,1])+1); \\ Michel Marcus, Jan 06 2021
  • Python
    def A(startn,lastn=0):
        a,n,lastn=[],startn,max(lastn,startn)
        while n<=lastn:
            i,j,v,m,f=2,0,0,n,[]
            while i
    				
  • Python
    from sympy import factorint
    def fromdigits(d, b):
      n = 0
      for di in d: n *= b; n += di
      return n
    def a(n):
      f = sorted(factorint(n, multiple=True))
      return fromdigits(f, f[-1]+1)
    print([a(n) for n in range(2, 76)]) # Michael S. Branicky, Jan 06 2021
    

Formula

a(p) = p for prime p.

A343027 Numbers whose concatenation of prime factors in increasing order is a prime number.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 21, 22, 23, 28, 29, 31, 33, 37, 39, 41, 43, 46, 47, 51, 52, 53, 54, 58, 59, 61, 63, 66, 67, 70, 71, 73, 79, 82, 83, 84, 89, 93, 97, 98, 101, 103, 107, 109, 111, 113, 115, 117, 127, 131, 133, 137, 139, 141, 142, 148, 149
Offset: 1

Views

Author

Wim JA Bruyninckx, Apr 02 2021

Keywords

Examples

			c(1) = 1    not prime -> 1 is not a term.
c(2) = 2    prime     -> 2 is a term.
c(3) = 3    prime     -> 3 is a term.
c(4) = 22   not prime -> 4 is not a term.
c(5) = 5    prime     -> 5 is a term.
c(6) = 23   prime     -> 6 is a term.
		

Crossrefs

Cf. A037276 (concatenate prime factors), A046411.
Cf. A068998.

Programs

  • Maple
    q:= n-> isprime(parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[]))):
    select(q, [$2..222])[];  # Alois P. Heinz, Mar 27 2024
  • Mathematica
    m[{p_, e_}] := Table[p, {e}]; c[w_] := FromDigits[Join @@ IntegerDigits@ w]; Select[ Range@ 150, PrimeQ@ c@ Flatten[m /@ FactorInteger[#]] &] (* Giovanni Resta, Apr 23 2021 *)
  • Python
    from sympy import *
    def b(n):
        f=factorint(n)
        l=sorted(f)
        return 1 if n==1 else int("".join(str(i)*f[i] for i in l))
    # print([b(n) for n in range(1, 101)])
    for n in range(1,200):
        if isprime(b(n)):
            print (n)

A350836 Numbers k such that A103168(k) = A340592(k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 14, 50, 101, 131, 151, 181, 191, 194, 313, 353, 373, 383, 712, 727, 757, 762, 787, 797, 919, 929, 1100, 1994, 2701, 4959, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 17 2022

Keywords

Comments

Numbers k such that the concatenation of the prime factors of k with multiplicity is congruent mod k to the reverse of k.
Terms for which the common value of A103168(k) and A340592(k) is prime include 14, 50, 194, 1100, and 116416.

Examples

			a(7) = 14 is a term because A103168(14) = 41 mod 14 = 13 and A340592(14) = 27 mod 14 = 13.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    f:= proc(n) local L,p,i,r;
      L:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      r:= L[1];
      for i from 2 to nops(L) do r:= r*10^(1+max(0,ilog10(L[i])))+L[i] od;
      r
    end proc:
    f(1):= 1:
    select(n -> (f(n) - revdigs(n)) mod n = 0, [$1..20000]);
  • Python
    from sympy import factorint
    def A103168(n):
        return int(str(n)[::-1])%n
    def A340592(n):
        if n == 1: return 0
        return int("".join(str(f) for f in factorint(n, multiple=True)))%n
    def ok(n):
        return A103168(n) == A340592(n)
    print([k for k in range(1, 20000) if ok(k)]) # Michael S. Branicky, Jan 18 2022

A038693 Numbers whose concatenation of prime factors (with multiplicity) is a square.

Original entry on oeis.org

10, 20, 145, 178, 183, 203, 802, 1131, 1202, 1618, 2436, 2454, 2810, 2867, 3218, 3983, 4645, 4758, 4939, 5602, 6989, 7569, 8166, 8874, 9023, 9298, 9407, 9691, 9821, 10562, 10845, 12205, 13138, 14907, 16739, 16805, 18482, 19443, 19858, 19894, 21445, 26941
Offset: 1

Views

Author

Keywords

Examples

			802 = 2*401 and 2401 = 49^2.
1131 = 3*13*29 and 31329 = 177^2.
		

Crossrefs

Cf. A037276.

Programs

  • PARI
    f(n)={ n<4 & return(n); for(i=1, #n=factor(n)~, n[1, i]=concat(vector(n[2, i], j, Str(n[1, i])))); eval(concat(n[1, ]));} \\ A037276
    isok(n) = (n>1) && issquare(f(n)); \\ Michel Marcus, Jan 28 2021

Extensions

Missing terms inserted and terms sorted by Sean A. Irvine, Jan 27 2021

A192180 Composite numbers n such that all digits of n occur in its list of primes.

Original entry on oeis.org

95, 132, 272, 312, 322, 326, 333, 731, 735, 912, 973, 995, 1111, 1212, 1255, 1292, 1972, 2112, 2132, 2232, 2272, 2512, 2672, 2737, 2994, 3171, 3192, 3210, 3212, 3243, 3315, 3393, 3792, 3933, 4172, 4341, 4371, 4383, 5150, 5192, 5271, 6973, 7132, 7210
Offset: 1

Views

Author

Gil Broussard, Jun 24 2011

Keywords

Comments

For the purpose here, if a number has repeated prime factors, those are written repeatedly. For example, the factorization of 27 is expressed as (3, 3, 3) rather than (3^3). - Alonso del Arte, Jul 05 2011

Examples

			Since the prime factorization of 95 is (5, 19), and both 9 and 5 occur in (5, 19), the number 95 is on the list.
Since the prime factorization of 1255 is (5, 251), and 1, 2, and both 5s occur in (5, 251), the number 1255 is on the list.
22 is not on the list because its prime factorization is (2, 11) and that does not have enough 2s. Nor is 25 on the list because for this sequence we express its factorization as (5, 5) rather than (5^2).
		

Crossrefs

Cf. A037276.

Programs

  • Magma
    S:=[]; for n in [1..10000] do if not IsPrime(n) then u:=Intseq(n); f:=Factorization(n); v:=&cat[ [ f[j, 1]: i in [1..f[j, 2]] ]: j in [1..#f] ]; w:=&cat[ Intseq(p): p in v ]; if forall{ a: a in [0..9] | Multiplicity(SequenceToMultiset(u), a) le Multiplicity(SequenceToMultiset(w), a) } then Append(~S, n); end if; end if; end for; S; // Klaus Brockhaus, Jul 09 2011
  • Mathematica
    Select[Range[2, 5000], Not[PrimeQ[#]] && Sort[DigitCount[FromDigits[Flatten[IntegerDigits/@Flatten[Table[#1, {#2}]&@@@FactorInteger[#]]]]] - DigitCount[#]][[1]] >= 0 &] (* Alonso del Arte, Jun 28 2011, based on HomePrimeStep function by Eric W. Weisstein *)

A287884 a(n) = A287883(2^n).

Original entry on oeis.org

1, 3, 28, 285, 2874, 29207, 293858, 2947737, 29514646, 295386007, 2955097334, 29553146265, 295558787590, 2955735778303, 29557796658178, 295579887348019, 2955811931652374, 29558179966812569, 295582026870344468, 2955821271264504051, 29558218775337316364, 295582213433030953645
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2017

Keywords

Comments

These are the terms where A287883 makes a dramatic jump.
It would be nice to have a formula.

Crossrefs

Programs

  • Mathematica
    co[n_,k_]:=Nest[Flatten[IntegerDigits[{#, n}]]&, n, k-1]; A037276=Table[FromDigits[Flatten[IntegerDigits[co@@@FactorInteger[n]]]], {n, 3 10^5}]; Table[Sum[A037276[[k]], {k, 1, 2^n}], {n, 0, 18}] (* Vincenzo Librandi, Oct 01 2017 *)
  • PARI
    A037276(k) = {for(i=1, #k=factor(k)~, k[1, i]=concat(vector(k[2, i], j, Str(k[1, i])))); eval(concat(k[1, ])); }
    lista(nn) = {my(s=1); print1(s); for(n=0, nn, s+=sum(k=2^n+1, 2*2^n, A037276(k)); print1(", ", s)); } \\ Jinyuan Wang, Feb 19 2020

Extensions

a(15)-a(18) from Vincenzo Librandi, Oct 01 2017
a(19)-a(21) from Jinyuan Wang, Feb 19 2020

A299400 a(n) = concatenation of all (i, e_i) with e_i > 0, when n = Product_{i >= 1} prime(i)^e_i.

Original entry on oeis.org

0, 11, 21, 12, 31, 1121, 41, 13, 22, 1131, 51, 1221, 61, 1141, 2131, 14, 71, 1122, 81, 1231, 2141, 1151, 91, 1321, 32, 1161, 23, 1241, 101, 112131, 111, 15, 2151, 1171, 3141, 1222, 121, 1181, 2161, 1331, 131, 112141, 141, 1251, 2231, 1191, 151, 1421, 42, 1132, 2171
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2018

Keywords

Comments

The conventional a(1) = 0 represents the empty concatenation.
Due to simple concatenation, this encoding of the positive integers becomes ambiguous from n = 613 = prime(112)^1 on, which has the same encoding a(n) = 1121 as 6 = prime(1)^1*prime(2)^1. To get a unique encoding, one could use, e.g., the digit 9 as delimiter to separate indices and exponents, written in base 9 as to use only digits 0..8, as soon as a term would be the duplicate of an earlier term (or for all n >= 613). Then one would have, e.g., a(613) = prime(134_9)^1 = 13491.
Sequence A067599 is based on the same idea, but uses the primes instead of their indices. In A037276 the prime factors are repeated, instead of giving the exponent. In A080670 exponents 1 are omitted. In A124010 only the prime signature is given. In A054841 the sum e_i*10^(i-1) is given, i.e., exponents are used as digits in base 10, while they are listed individually in the rows of A067255.

Examples

			2 = prime(1)^1 => a(2) = 11,
3 = prime(2)^1 => a(3) = 21,
4 = prime(1)^2 => a(4) = 12,
5 = prime(3)^1 => a(5) = 31,
6 = prime(1)^1*prime(2)^1 => a(1) = 1121,
7 = prime(3)^1 => a(7) = 41,
8 = prime(1)^3 => a(8) = 13, and so on.
		

Crossrefs

Cf. A067599 (decimal encoding of prime factorization).

Programs

  • Maple
    a:= n-> `if`(n=1, 0, parse(cat(seq([numtheory[pi]
           (i[1]), i[2]][], i=sort(ifactors(n)[2]))))):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 16 2018
  • Mathematica
    Array[FromDigits@ Flatten@ Map[{PrimePi@ #1, #2} & @@ # &, FactorInteger@ #] &, 51] (* Michael De Vlieger, Mar 16 2018 *)
  • PARI
    A299400(n)=if(n=factor(n),eval(concat(apply(f->Str(primepi(f[1]),f[2]), Col(n)~))))
Previous Showing 21-30 of 35 results. Next