A084969
Numbers whose smallest prime factor is 11.
Original entry on oeis.org
11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859, 1903, 1969, 1991, 2057, 2101, 2123, 2167, 2189, 2299, 2321
Offset: 1
a(2) = 11*11, a(3) = 11*13.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
A088821
a(n) is the sum of smallest prime factors of numbers from 1 to n.
Original entry on oeis.org
0, 2, 5, 7, 12, 14, 21, 23, 26, 28, 39, 41, 54, 56, 59, 61, 78, 80, 99, 101, 104, 106, 129, 131, 136, 138, 141, 143, 172, 174, 205, 207, 210, 212, 217, 219, 256, 258, 261, 263, 304, 306, 349, 351, 354, 356, 403, 405, 412, 414, 417, 419, 472, 474, 479, 481, 484
Offset: 1
- M. Kalecki, On certain sums extended over primes or prime factors, Prace Mat, Vol. 8 (1963), pp. 121-127.
- J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, Chapter IV, p. 121.
-
P:=List(List([2..60],n->Factors(n)),i->i[1]);;
a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
-
Prepend[Accumulate[Rest[Table[FactorInteger[i][[1,1]],{i,60}]]],0] (* Harvey P. Dale, Jan 09 2011 *)
-
a(n) = sum(k=2, n, factor(k)[1,1]); \\ Michel Marcus, May 15 2017
A284411
Least prime p such that more than half of all integers are divisible by n distinct primes not greater than p.
Original entry on oeis.org
3, 37, 42719, 5737850066077
Offset: 1
Exactly half of the integers are divisible by 2, so a(1)>2. Two-thirds of all integers are divisible by 2 or 3, so a(1) = 3.
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, pp. 13, 216 and 368.
- Jean-Marie De Koninck and Gérald Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 133, No. 2 (2002), pp. 191-204.
- Gérald Tenenbaum, Some of Erdős' unconventional problems in number theory, thirty-four years later, Erdős Centennial, Janos Bolyai Math. Soc., 2013, 651-681. HAL Id: hal-01281530.
A053144
Cototient of the n-th primorial number.
Original entry on oeis.org
1, 4, 22, 162, 1830, 24270, 418350, 8040810, 186597510, 5447823150, 169904387730, 6317118448410, 260105476071210, 11228680258518030, 529602053223499410, 28154196550210460730, 1665532558389396767070
Offset: 1
In the reduced residue system of q(4) = 2*3*5*7 - 210 the number of coprimes to 210 is 48, while a(4) = 210 - 48 = 162 is the number of values divisible by one of the prime factors of q(4).
-
Abs[Table[ Total[Table[(-1)^(k + 1)* Total[Apply[Times, Subsets[Table[Prime[n], {n, 1, m}], {k}], 2]], {k, 0, m - 1}]], {m, 1, 22}]] (* Geoffrey Critzer, Apr 08 2010 *)
Array[# - EulerPhi@ # &@ Product[Prime@ i, {i, #}] &, 17] (* Michael De Vlieger, Feb 17 2019 *)
-
a(n) = prod(k=1, n, prime(k)) - prod(k=1, n, prime(k)-1); \\ Michel Marcus, Feb 08 2019
A309497
Irregular triangle read by rows: T(n,k) = A060753(n)*k-A038110(n)*A286941(n,k).
Original entry on oeis.org
0, 1, 2, 1, 11, 2, 1, 8, 7, 14, 13, 4, 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8
Offset: 0
The triangle starts:
row1: 0;
row2: 1;
row3: 2, 1;
row4: 11, 2, 1, 8, 7, 14, 13, 4;
row5: 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8;
Cf.
A058250,
A005867,
A002110,
A038110,
A038111,
A060753,
A286941,
A058262,
A161527,
A083140,
A308121.
-
row[0] = 0; row[n_] := -(v = Numerator[Product[1 - 1/Prime[i], {i, 1, n}] / Prime[n]] * Select[Range[(p = Product[Prime[i], {i, 1, n}])], CoprimeQ[p, #] &]) + Denominator[Product[((pr = Prime[i]) - 1)/pr, {i, 1, n}]] * Range[Length[v]]; Table[row[n], {n, 0, 4}] // Flatten (* Amiram Eldar, Aug 10 2019 *)
A342479
a(n) is the numerator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
Original entry on oeis.org
0, 1, 1, 1, 46, 44, 288, 33216, 613248, 151296, 391584768, 2383570944, 86830424064, 206470840320, 21270238986240, 987259950858240, 1262040231444480, 3022250536693923840, 3884253754215628800, 1102040800033347993600, 1892288242221318144000, 5616902226049109065728000
Offset: 1
The fractions begin with 0, 1/6, 1/10, 1/15, 46/1155, 44/1365, 288/12155, 33216/1616615, 613248/37182145, 151296/11849255, 391584768/33426748355, ...
a(1) = 0 since there are no numbers whose second smallest prime divisor is prime(1) = 2.
a(2)/A342480(2) = 1/6 since the numbers whose second smallest prime divisor is prime(2) = 3 are the positive multiples of 6.
a(3)/A342480(3) = 1/10 since the numbers whose second smallest prime divisor is prime(3) = 5 are the numbers congruent to {10, 15, 20} (mod 30) whose density is 3/30 = 1/10.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
-
f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Numerator @ Array[f, 30]
A342480
a(n) is the denominator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
Original entry on oeis.org
1, 6, 10, 15, 1155, 1365, 12155, 1616615, 37182145, 11849255, 33426748355, 247357937827, 10141675450907, 25652473199353, 2928046583754721, 155186468939000213, 223317113839049087, 558516101711461766587, 796182527971658263007, 241532826894674874877669, 430046252763689411367557
Offset: 1
-
f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Denominator @ Array[f, 30]
A254196
a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
Original entry on oeis.org
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1
a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
-
seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
-
Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
-
a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017
A378720
a(n) is the numerator of the asymptotic density of numbers whose third smallest prime divisor is prime(n).
Original entry on oeis.org
0, 0, 1, 1, 4, 326, 628, 992, 98304, 125568, 733440, 281163264, 386427322368, 3178249003008, 12454223855616, 6450728943845376, 342348724735967232, 20218431581110665216, 39814891891080560640, 82739188294287768944640, 15336676441718784000, 61298453882755419734016000
Offset: 1
The fractions begin with 0/1, 0/1, 1/30, 1/30, 4/165, 326/15015, 628/36465, 992/62985, 98304/7436429, 125568/11849255, ..., .
a(1) = a(2) = 0 since there are no numbers whose third prime divisor is 2 or 3.
a(3)/A378721(3) = 1/30 since the numbers whose third prime divisor is 5 are the numbers that are divisible by 2, 3 and 5, and their density if (1/2)*(1/3)*(1/5) = 1/30.
a(4)/A378721(4) = 1/30 since the numbers whose third prime divisor is 7 are the union of the numbers that are divisible by 2, 3 and 7 and not by 5 whose density is (1/2)*(1/3)*(1-1/5)*(1/7) = 2/105, the numbers that are divisible by 2, 5 and 7 and not by 3 whose density is (1/2)*(1-1/3)*(1/5)*(1/7) = 1/105, and the numbers that are divisible by 3, 5 and 7 and not by 2 whose density is (1-1/2)*(1/3)*(1/5)*(1/7) = 1/210, and 2/105 + 1/105 + 1/210 = 1/30.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
- Amiram Eldar, Table of n, a(n) for n = 1..365
- Jean-Marie de Koninck and Gérald Tenenbaum, Sur la loi de répartition du k-ième facteur premier d'un entier, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 133, No. 2 (2002), pp. 191-204.
- Paul Erdős and Gérald Tenenbaum, Sur les densités de certaines suites d'entiers, Proc. London Math. Soc. (3), Vol. 59, No. 3 (1989), pp. 417-438; alternative link.
-
a[n_] := Block[{p, q = Prime@ Range@ n}, p = Fold[Times, 1, q]; q = Most@ q; Plus @@ Times @@@ Subsets[q -1, {n -3}]/p]; a[1] = 0; Numerator@ Array[a, 22]
-
a(n) = {my(v = primes(n), q = vecextract(apply(x -> x-1, v),"^-1"), p = vecprod(v), prd = vecprod(q)/p, sm = 0, sb); forsubset([#q, 2], s, sb = vecextract(q, s); sm += 1/vecprod(sb)); numerator(prd * sm);}
A378721
a(n) is the denominator of the asymptotic density of numbers whose third smallest prime divisor is prime(n).
Original entry on oeis.org
1, 1, 30, 30, 165, 15015, 36465, 62985, 7436429, 11849255, 73465381, 33426748355, 50708377254535, 436092044389001, 1863302371480277, 1086305282573001491, 64092011671807087969, 3909612711980232366109, 8449808119441147371913, 18598027670889965365580513, 3543193335582015099413
Offset: 1
-
a[n_] := Block[{p, q = Prime@ Range@ n}, p = Fold[Times, 1, q]; q = Most@ q; Plus @@ Times @@@ Subsets[q -1, {n -3}]/p]; a[1] = 0; Denominator@ Array[a, 21]
-
a(n) = {my(v = primes(n), q = vecextract(apply(x -> x-1, v),"^-1"), p = vecprod(v), prd = vecprod(q)/p, sm = 0, sb); forsubset([#q, 2], s, sb = vecextract(q, s); sm += 1/vecprod(sb)); denominator(prd * sm);}
Comments