A037178 Longest cycle when squaring modulo n-th prime.
1, 1, 1, 2, 4, 2, 1, 6, 10, 3, 4, 6, 4, 6, 11, 12, 28, 4, 10, 12, 6, 12, 20, 10, 2, 20, 8, 52, 18, 3, 6, 12, 8, 22, 36, 20, 12, 54, 82, 14, 11, 12, 36, 2, 21, 30, 12, 36, 28, 18, 28, 24, 4, 100, 1, 130, 66, 36, 22, 12, 46, 9, 24, 20, 12, 39, 20, 6, 172, 28, 10, 178, 60, 10, 18
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie, On a digraph defined by squaring modulo n, Fibonacci Quart. 30 (Nov. 1992), 322-333.
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016. See table on page 2.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n], k}, k = (p-1)/2^IntegerExponent[p-1, 2]; MultiplicativeOrder[2, k]]; Array[a, 100] (* Jean-François Alcover, Jan 28 2016, after T. D. Noe *)
-
PARI
a(n) = {ppn = prime(n) - 1; k = ppn >> valuation(ppn, 2); znorder(Mod(2, k));} \\ Michel Marcus, Nov 11 2015
-
PARI
rpsi(n) = lcm(znstar(n)[2]); \\ A002322 pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733 a(n) = pb(rpsi(prime(n))); \\ Michel Marcus, Jan 28 2016
Comments