A111577
Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1
T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
1;
1, 1;
1, 5, 1;
1, 21, 12, 1;
1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1 \ /1 \/1 \/1 \
|1 1 | |1 1 ||0 1 ||0 1 |
|1 5 1 | = |1 4 1 ||0 1 1 ||0 0 1 | ...
|1 21 12 1 | |1 13 7 1 ||0 1 4 1 ||0 0 1 1 |
|1 85 105 22 1| |1 44 34 10 1||0 1 13 7 1 ||0 0 1 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
- Peter Bala, A 3 parameter family of generalized Stirling numbers, 2015.
- Peter Bala, Factorising (r,b)-Stirling arrays
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [_Paul Barry_, Nov 26 2008]
-
A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
-
T[, 1] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
A105794
Inverse of a generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -1, 1, 1, -1, 1, -1, 1, 0, 1, 1, -1, 1, 2, 1, -1, 1, 0, 5, 5, 1, 1, -1, 1, 10, 20, 9, 1, -1, 1, 0, 21, 70, 56, 14, 1, 1, -1, 1, 42, 231, 294, 126, 20, 1, -1, 1, 0, 85, 735, 1407, 924, 246, 27, 1, 1, -1, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0
The triangle starts with
n=0: 1;
n=1: -1, 1;
n=2: 1, -1, 1;
n=3: -1, 1, 0, 1;
n=4: 1, -1, 1, 2, 1;
n=5: -1, 1, 0, 5, 5, 1;
... - _Wolfdieter Lang_, Jun 20 2011
- S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.
- Robert Israel, Table of n, a(n) for n = 0..9869
- Peter Bala, Notes on A105794
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- B. Duncan and R. Peele, Bell and Stirling Numbers for Graphs, Journal of Integer Sequences 12 (2009), article 09.7.1.
- D. Galvin and D. T. Thanh, Stirling numbers of forests and cycles, Electr. J. Comb. Vol. 20(1): P73 (2013).
- Sophie Morier-Genoud, Counting Coxeter's friezes over a finite field via moduli spaces, arXiv:1907.12790 [math.CO], 2019.
-
B:= Matrix(12,12,shape=triangular[lower],(n,k) -> combinat:-stirling1(n-1,k-1)+(n-1)*combinat:-stirling1(n-2,k-1)):
A:= B^(-1):
seq(seq(A[i,j],j=1..i),i=1..12); # Robert Israel, Jan 19 2015
T := (n, k) -> add((-1)^(n - i)*binomial(n, i)*Stirling2(i, k), i=0..n):
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Feb 15 2025
-
Table[Sum[(-1)^(n - i)*Binomial[n, i] StirlingS2[i, k], {i, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 14 2019 *)
A154537
Triangle T(n,m) read by rows: let p(n,x) = exp(-x) * Sum_{m >= 0} (2*m + 1)^n * x^m/m!; then T(n,m) = [x^m] p(n,x).
Original entry on oeis.org
1, 1, 2, 1, 8, 4, 1, 26, 36, 8, 1, 80, 232, 128, 16, 1, 242, 1320, 1360, 400, 32, 1, 728, 7084, 12160, 6320, 1152, 64, 1, 2186, 36876, 99288, 81200, 25312, 3136, 128, 1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256, 1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512
Offset: 0
Triangle begins:
{1},
{1, 2},
{1, 8, 4},
{1, 26, 36, 8},
{1, 80, 232, 128, 16},
{1, 242, 1320, 1360, 400, 32},
{1, 728, 7084, 12160, 6320, 1152, 64},
{1, 2186, 36876, 99288, 81200, 25312, 3136, 128},
{1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256},
{1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512},
...
Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[4*3*T(3, 2) + 2*6*(-2)^2*Bernoulli(2)*T(2,2)] = (1/2)*(12*36 + 12*4*(1/6)*4) = 232. - _Wolfdieter Lang_, Aug 11 2017
- Khristo N. Boyadzhiev, New identities with Stirling, hyperharmonic, and derangement numbers, Bernoulli and Euler polynomials, powers, and factorials, arXiv:2011.03101v3 [math.NT], 2020-2021.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Eric Weisstein's World of Mathematics, Dobiński's formula
-
p[x_, n_] = Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
A286718
Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
O: 1
1: 1 1
2: 4 5 1
3: 28 39 12 1
4: 280 418 159 22 1
5: 3640 5714 2485 445 35 1
6: 58240 95064 45474 9605 1005 51 1
7: 1106560 1864456 959070 227969 28700 1974 70 1
8: 24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From _Wolfdieter Lang_, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- P. Bala, A 3 parameter family of generalized Stirling numbers
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Peter Luschny, The Stirling-Frobenius numbers.
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is
A048993,
A154537,
A282629,
A225466,
A285061 and
A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is
A132393,
A028338,
A225470,
A290317 and
A225471, respectively.
-
T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[, -1] = 0; T[0, 0] = 1; T[n, k_] /; nJean-François Alcover, Jun 20 2018 *)
A103220
a(n) = n*(n+1)*(3*n^2+n-1)/6.
Original entry on oeis.org
0, 1, 13, 58, 170, 395, 791, 1428, 2388, 3765, 5665, 8206, 11518, 15743, 21035, 27560, 35496, 45033, 56373, 69730, 85330, 103411, 124223, 148028, 175100, 205725, 240201, 278838, 321958, 369895, 422995, 481616, 546128, 616913, 694365, 778890
Offset: 0
-
for(n=0,100,print1((3*n^4+4*n^3-n)/6,","))
-
CoefficientList[Series[- x (1 + 8 x + 3 x^2) / (x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{0,1,13,58,170},40] (* Harvey P. Dale, Jan 23 2016 *)
-
a(n)=n*(n+1)*(3*n^2+n-1)/6 \\ Charles R Greathouse IV, Oct 07 2015
A145905
Square array read by antidiagonals: Hilbert transform of triangle A060187.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
-
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
A225468
Triangle read by rows, S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 4, 7, 1, 8, 39, 15, 1, 16, 203, 159, 26, 1, 32, 1031, 1475, 445, 40, 1, 64, 5187, 12831, 6370, 1005, 57, 1, 128, 25999, 107835, 82901, 20440, 1974, 77, 1, 256, 130123, 888679, 1019746, 369061, 53998, 3514, 100, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 4, 7, 1,
[3] 8, 39, 15, 1,
[4] 16, 203, 159, 26, 1,
[5] 32, 1031, 1475, 445, 40, 1,
[6] 64, 5187, 12831, 6370, 1005, 57, 1.
Connection constants: Row 3: [8, 39, 15, 1] so
x^3 = 8 + 39*(x - 2) + 15*(x - 2)*(x - 5) + (x - 2)*(x - 5)*(x - 8). - _Peter Bala_, Jan 27 2015
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
-
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 3), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/ (factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 3) for k in (0..n)]
A225469
Triangle read by rows, S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 1, 9, 10, 1, 27, 79, 21, 1, 81, 580, 310, 36, 1, 243, 4141, 3990, 850, 55, 1, 729, 29230, 48031, 16740, 1895, 78, 1, 2187, 205339, 557571, 299131, 52745, 3689, 105, 1, 6561, 1439560, 6338620, 5044536, 1301286, 137592, 6524, 136, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 3, 1,
[2] 9, 10, 1,
[3] 27, 79, 21, 1,
[4] 81, 580, 310, 36, 1,
[5] 243, 4141, 3990, 850, 55, 1,
[6] 729, 29230, 48031, 16740, 1895, 78, 1.
- Vincenzo Librandi, Rows n = 0..50, flattened
- P. Bala, A 3 parameter family of generalized Stirling numbers.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
-
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 4), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/(factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 4) for k in (0..n)]
A016209
Expansion of 1/((1-x)(1-3x)(1-5x)).
Original entry on oeis.org
1, 9, 58, 330, 1771, 9219, 47188, 239220, 1205941, 6059229, 30384718, 152189310, 761743711, 3811110039, 19062724648, 95335146600, 476740303081, 2383895225649, 11920057258978, 59602029687090
Offset: 0
a(2) = h^{(3)}_2 = 1^2 + 3^2 + 5^2 + 1^1*(3^1 + 5^1) + 3^1*5^1 = 58. - _Wolfdieter Lang_, May 26 2017
Cf.
A016218,
A016208,
A000392,
A000225,
A003462,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A016256,
A039755,
A021424.
-
[(5^(n+2)-2*3^(n+2)+1)/8: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
A016209 := proc(n) (5^(n+2)-2*3^(n+2)+1)/8; end proc: # R. J. Mathar, Mar 22 2011
-
Join[{a=1,b=9},Table[c=8*b-15*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2011 *)
CoefficientList[Series[1/((1-x)(1-3x)(1-5x)),{x,0,30}],x] (* or *) LinearRecurrence[ {9,-23,15},{1,9,58},30] (* Harvey P. Dale, Feb 20 2020 *)
-
a(n)=if(n<0,0,n+=2; (5^n-2*3^n+1)/8)
A214406
Triangle of second-order Eulerian numbers of type B.
Original entry on oeis.org
1, 1, 1, 1, 8, 3, 1, 33, 71, 15, 1, 112, 718, 744, 105, 1, 353, 5270, 14542, 9129, 945, 1, 1080, 33057, 191384, 300291, 129072, 10395, 1, 3265, 190125, 2033885, 6338915, 6524739, 2071215, 135135, 1, 9824, 1038780, 18990320, 103829590, 204889344, 150895836, 37237680, 2027025
Offset: 0
Row 2: [1,8,3]:
Signed Stirling permutations of order 2
= = = = = = = = = = = = = = = = = = = =
..............ascents...................ascents
(0 2 2 1 1)......1.......(0 -2 -2 1 1).....1
(0 1 2 2 1)......2.......(0 1 -2 -2 1).....2
(0 1 1 2 2)......2.......(0 1 1 -2 -2).....1
(0 2 2 -1 -1)....1.......(0 -2 -2 -1 -1)...1
(0 -1 2 2 -1)....1.......(0 -1 -2 -2 -1)...1
(0 -1 -1 2 2)....1.......(0 -1 -1 -2 -2)...0
............................................
Triangle begins
.n\k.|..0.....1......2.......3......4........5......6
= = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1.....1
..2..|..1.....8......3
..3..|..1....33.....71......15
..4..|..1...112....718.....744....105
..5..|..1...353...5270...14542...9129......945
..6..|..1..1080..33057..191384..300291..129072..10395
...
Recurrence example: T(4,2) = 11*T(3,1) + 5*T(3,2) = 11*33 + 5*71 = 718.
-
T[n_, k_] /; 0 < k <= n := T[n, k] = (4n-2k-1) T[n-1, k-1] + (2k+1) T[n-1, k]; T[, 0] = 1; T[, _] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
Comments