E.g.f. row polynomials: exp(x + y/2 * (exp(2*x) - 1)).
T(n,k) = T(n-1,k-1) + (2*k+1)*T(n-1,k) with T(0,k) = 1 if k=0 and 0 otherwise. Sum_{k=0..n} T(n,k) =
A007405(n). -
R. J. Mathar, Oct 30 2009; corrected by
Joshua Swanson, Feb 14 2019
T(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2*j+1)^n.
The row polynomials R(n,x) satisfy the Dobinski-type identity:
R(n,x) = exp(-x/2)*Sum_{k >= 0} (2*k+1)^n*(x/2)^k/k!, as well as the recurrence equation R(n+1,x) = (1+x)*R(n,x)+2*x*R'(n,x). The polynomial R(n,x) has all real zeros (apply [Liu et al., Theorem 1.1] with f(x) = R(n,x) and g(x) = R'(n,x)). The polynomials R(n,2*x) are the row polynomials of
A154537. -
Peter Bala, Oct 28 2011
The o.g.f. for the n-th diagonal (with interpolated zeros) is the rational function D^n(x), where D is the operator x/(1-x^2)*d/dx. For example, D^3(x) = x*(1+8*x^2+3*x^4)/(1-x^2)^5 = x + 13*x^3 + 58*x^5 + 170*x^7 + ... . See
A214406 for further details.
An alternative formula for the o.g.f. of the n-th diagonal is exp(-x/2)*(Sum_{k >= 0} (2*k+1)^(k+n-1)*(x/2*exp(-x))^k/k!).
(End)
T(n,m) = Sum_{i=0..n-m} 2^(n-m-i)*binomial(n,i)*St2(n-i,m), where St2(n,k) are the Stirling numbers of the second kind,
A048993 (also
A008277). See p. 755 of Dolgachev and Lunts.
The relation of this entry's e.g.f. above to that of the Bell polynomials, Bell_n(y), of
A048993 establishes this formula from a binomial transform of the normalized Bell polynomials, NB_n(y) = 2^n Bell_n(y/2); that is, e^x exp[(y/2)(e^(2x)-1)] = e^x exp[x*2*Bell.(y/2)] = exp[x(1+NB.(y))] = exp(x*P.(y)), so the row polynomials of this entry are given by P_n(y) = [1+NB.(y)]^n = Sum_{k=0..n} C(n,k) NB_k(y) = Sum_{k=0..n} 2^k C(n,k) Bell_k(y/2).
The umbral compositional inverses of the Bell polynomials are the falling factorials Fct_n(y) = y! / (y-n)!; i.e., Bell_n(Fct.(y)) = y^n = Fct_n(Bell.(y)). Since P_n(y) = [1+2Bell.(y/2)]^n, the umbral inverses are determined by [1 + 2 Bell.[ 2 Fct.[(y-1)/2] / 2 ] ]^n = [1 + 2 Bell.[ Fct.[(y-1)/2] ] ]^n = [1+y-1]^n = y^n. Therefore, the umbral inverse sequence of this entry's row polynomials is the sequence IP_n( y) = 2^n Fct_n[(y-1)/2] = (y-1)(y-3) .. (y-2n+1) with IP_0(y) = 1 and, from the binomial theorem, with e.g.f. exp[x IP.(y)]= exp[ x 2Fct.[(y-1)/2] ] = (1+2x)^[(y-1)/2] = exp[ [(y-1)/2] log(1+2x) ].
(End)
Let B(n,k) = T(n,k)*((2*k)!)/(2^k*k!) and P(n,x) = Sum_{k=0..n} B(n,k)*x^(2*k+1). Then (1) P(n+1,x) = (x+x^3)*P'(n,x) for n >= 0, and (2) Sum_{n>=0} B(n,k)/(n!)*t^n = binomial(2*k,k)*exp(t)*(exp(2*t)-1)^k/4^k for k >= 0, and (3) Sum_{n>=0} t^n* P(n,x)/(n!) = x*exp(t)/sqrt(1+x^2-x^2*exp(2*t)). -
Werner Schulte, Dec 12 2016
G.f. column k: x^k/Product_{j=0..k} (1 - (1+2*j)*x), k >= 0.
T(n, k) = h^{(k+1)}_{n-k}, the complete homogeneous symmetric function of degree n-k of the k+1 symbols a_j = 1 + 2*j, j = 0, 1, ..., k. (End)
With p(n, x) = Sum_{k=0..n}
A001147(k) * T(n, k) * x^k for n >= 0 holds:
(1) Sum_{i=0..n} p(i, x)*p(n-i, x) = 2^n*(Sum_{k=0..n}
A028246(n+1, k+1)*x^k);
(2) p(n, -1/2) = (n!) * ([t^n] sqrt(2 / (1 + exp(-2*t)))). -
Werner Schulte, Feb 16 2024
Comments