cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A121306 Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

Original entry on oeis.org

2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 19, 81, 204, 336, 378, 294, 156, 54, 100, 285, 540, 714, 672, 450, 210, 385, 825, 1254, 1386, 1122
Offset: 0

Views

Author

Thomas Wieder, Aug 04 2006, Aug 06 2006

Keywords

Comments

For a(1,0)=1, a(m>1,0)=0 and a(0,n>=0)=0 one gets Pascal's triangle A007318.

Examples

			Array begins
2 2 2 2 2 2 2 2 2 ...
3 5 7 9 11 13 15 17 19 ...
4 9 16 25 36 49 64 81 100 ...
5 14 30 55 91 140 204 285 385 ...
6 20 50 105 196 336 540 825 1210 ...
7 27 77 182 378 714 1254 2079 3289 ...
		

Crossrefs

Programs

  • Excel
    =Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.

Formula

a(m,n) = a(m,n-1)+a(m-1,n), a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

Extensions

Edited by N. J. A. Sloane, Sep 15 2006

A133111 a(n) = (1/(1!*2!*3!*4!))*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} |det V(x_1,x_2,x_3,x_4)|, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4.

Original entry on oeis.org

0, 0, 0, 1, 16, 126, 672, 2772, 9504, 28314, 75504, 184041, 416416, 884884, 1782144, 3426384, 6325632, 11267532, 19442016, 32605881, 53300016, 85131970, 133138720, 204246900, 307850400, 456528150, 666928080, 960846705, 1366537536, 1920285576, 2668289536
Offset: 1

Views

Author

Peter Bala, Sep 13 2007

Keywords

Comments

Compare with A000292 and A040977 for the corresponding sums for the Vandermonde matrices of orders 2 and 3 respectively.
a(n) = sum of dimensions of all irreducible polynomial representations of GL(4) whose highest weight is of the form (m1 >= m2 >= m3 >= m4) and m1 <= n. - Oded Yacobi (oyacobi(AT)math.ucsd.edu), Jul 24 2008

Crossrefs

Programs

  • Magma
    A133111:= func< n | Binomial(n+2,5)*Binomial(n+4,5)/21 >;
    [A133111(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    a[n_] := n^2 (n^2 - 1)^2 (n^2 - 4) (n^2 - 9)/302400; Array[a, 30] (* Robert G. Wilson v, Sep 17 2007 *)
    Rest@ CoefficientList[ Series[x^4*(1 + 5 x + 5 x^2 + x^3)/(1 - x)^11, {x, 0, 30}], x] (* Robert G. Wilson v, Sep 17 2007 *)
  • SageMath
    def A133111(n): return binomial(n+2,5)*binomial(n+4,5)//21
    print([A133111(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

a(n) = (1/288)*Sum_{1 <= i,j,k,l <= n} |(i-j)(i-k)(j-k)(i-l)(j-l)(k-l)|.
G.f.: x^4*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^11 .
a(n) = n^2*(n^2 - 1)^2*(n^2 - 4)*(n^2 - 9)/302400.
a(n) = Sum_{i + j + k + l = n} i*j*k^2*l^3.
a(n) = (1/21)*A107396(n-3). - G. C. Greubel, Feb 09 2025

Extensions

More terms from Robert G. Wilson v, Sep 17 2007

A133708 First differences of A047835.

Original entry on oeis.org

0, 0, 1, 69, 1694, 22932, 208152, 1413720, 7697052, 35194302, 139687119, 493127635, 1577331756, 4637757488, 12679063488, 32529562560, 78917794128, 182184724908, 402332471541, 853769650041, 1747606106554, 3462012537060, 6656436729800, 12452933493000
Offset: 1

Views

Author

Peter Bala, Sep 21 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,1},Differences[Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,30}]]] (* Harvey P. Dale, Aug 08 2015 *)

Formula

In terms of Vandermonde determinants, a(n) = 1/864*sum {1 <= x_1,x_2,x_3 <= n} (x_1*x_2*x_3)^2*(det V(x_1,x_2,x_3))^2 = 1/864 *sum {1 <= i,j,k <= n} (i*j*k*(i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. a(n) = (n-2)*(n-1)^2*n^3*(n+1)^3*(n+2)^2*(n+3)*(n^2+n+3)*(2n+1)/108864000.
Empirical G.f.: x^3*(x+1)*(x^8+52*x^7+658*x^6+2890*x^5+4810*x^4+2890*x^3+658*x^2+52*x+1)/(x-1)^16. [Colin Barker, Jun 06 2012]

A191662 a(n) = n! / A000034(n-1).

Original entry on oeis.org

1, 1, 6, 12, 120, 360, 5040, 20160, 362880, 1814400, 39916800, 239500800, 6227020800, 43589145600, 1307674368000, 10461394944000, 355687428096000, 3201186852864000, 121645100408832000, 1216451004088320000, 51090942171709440000, 562000363888803840000
Offset: 1

Views

Author

Paul Curtz, Jun 10 2011

Keywords

Comments

The a(n) are the denominators in the formulas of the k-dimensional square pyramidal numbers:
A005408 = (2*n+1)/1 = 1, 3, 5, 7, 9, ... (k=1)
A000290 = (n^2)/1 = 1, 4, 9, 16, 25, ... (k=2)
A000330 = n*(n+1)*(2*n+1)/6 = 1, 5, 14, 30, 55, ... (k=3)
A002415 = (n^2)*(n^2-1)/12 = 1, 6, 20, 50, 105, ... (k=4)
A005585 = n*(n+1)*(n+2)*(n+3)*(2*n+3)/120 = 1, 7, 27, 77, 182, ... (k=5)
A040977 = (n^2)*(n^2-1)*(n^2-4)/360 = 1, 8, 35, 112, 294, ... (k=6)
A050486 (k=7), A053347 (k=8), A054333 (k=9), A054334 (k=10), A057788 (k=11).
The first superdiagonal of this array appears in A029651. - Paul Curtz, Jul 04 2011
The general formula for the k-dimensional square pyramidal numbers is (2*n+k)*binomial(n+k-1,k-1)/k, k >= 1, n >= 0, see A097207. - Johannes W. Meijer, Jun 22 2011

Crossrefs

Programs

Formula

a(2*n-1) = (2*n-1)!, a(2*n) = (2*n)!/2.
a(n+1) = A064680(n+1) * a(n).
From Amiram Eldar, Jul 06 2022: (Start)
Sum_{n>=1} 1/a(n) = sinh(1) + 2*cosh(1) - 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sinh(1) - 2*cosh(1) + 2. (End)
D-finite with recurrence: a(n) - (n-1)*n*a(n-2) = 0 for n >= 3 with a(1)=a(2)=1. - Georg Fischer, Nov 25 2022
a(n) = A052612(n)/2 for n >= 1. - Alois P. Heinz, Sep 05 2023

Extensions

More terms from Harvey P. Dale, Mar 14 2014

A202670 Symmetric matrix based on A000290 (the squares), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 17, 9, 16, 40, 40, 16, 25, 73, 98, 73, 25, 36, 116, 184, 184, 116, 36, 49, 169, 298, 354, 298, 169, 49, 64, 232, 440, 584, 584, 440, 232, 64, 81, 305, 610, 874, 979, 874, 610, 305, 81, 100, 388, 808, 1224, 1484, 1484, 1224, 808, 388, 100, 121
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let s=(1,4,9,16,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202670 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202671 for characteristic polynomials of principal submatrices of M.
...
row 1 (1,4,9,16,...) A000290
row 2 (4,17,40,73,...) A145995
diagonal (1,17,98,354,...) A000538
antidiagonal sums (1,8,35,112,...) A040977
...
The n-th "square border sum" m(n,1)+m(n,2)+...+m(n,n)+m(n-1,n)+m(n-2,n)+...+m(1,n) is a squared square pyramidal number: [n*(n+1)*(2*n+1)/6]^2; see A000330.

Examples

			Northwest corner:
1.....4......9....16....25
4....17.....40....73...116
9....40.....98...184...298
16...73....184...354...584
25...116...298...584...979
		

Crossrefs

Programs

  • Mathematica
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ Table[k^2, {k, 1, 12}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]

A208508 Triangle of coefficients of polynomials u(n,x) jointly generated with A208509; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 1, 1, 16, 6, 1, 25, 20, 1, 1, 36, 50, 8, 1, 49, 105, 35, 1, 1, 64, 196, 112, 10, 1, 81, 336, 294, 54, 1, 1, 100, 540, 672, 210, 12, 1, 121, 825, 1386, 660, 77, 1, 1, 144, 1210, 2640, 1782, 352, 14, 1, 169, 1716, 4719, 4290, 1287, 104, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Comments

col 1: A000012
col 2: A000290 (squares)
col 3: A002415
col 4: A040977
col 5: A054334
row sums, u(n,1): A083329

Examples

			First five rows:
1
1...1
1...4
1...9....1
1...16...6
First five polynomials u(n,x):
1
1 + x
1 + 4x
1 + 9x + x^2
1 + 16x + 6x^2
		

Crossrefs

Cf. A208509.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208508 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208509 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A060558 Fifth column (m=4) of triangle A060556.

Original entry on oeis.org

5, 55, 316, 1284, 4170, 11550, 28380, 63492, 131703, 256685, 474760, 839800, 1429428, 2352732, 3759720, 5852760, 8900265, 13252899, 19362596, 27804700, 39303550, 54761850, 75294180, 102265020
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n)={(2*n^2 + 18*n + 35)*binomial(n + 6, 6)/7} \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = (2*n^2 + 18*n + 35)*binomial(n+6, 6)/7.
G.f.: (5 + 10*x + x^2)/(1-x)^9.

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A138331 a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.

Original entry on oeis.org

-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fourth column of the triangle defined in A123588, seventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A040977.

Programs

  • Magma
    [ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
    
  • Magma
    k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
    
  • Maple
    seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
  • Mathematica
    LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));

Formula

a(n) = coefficient of x^6 in the polynomial 1 - T_(n+3)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 16*(x-1)/(x+1)^7.
a(n) = (-1)^(n+1)*16*A040977(n).
a(n) = a(-n-5). - Bruno Berselli, Sep 13 2011

A143844 Triangle T(n,k) = k^2 read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 0, 1, 4, 9, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121
Offset: 0

Views

Author

Paul Curtz, Sep 03 2008

Keywords

Comments

This is triangle A133819 with an additional leading column of zeros.
There is a family of even integer-valued polynomials p_n(x) = product_{k=0..n} (x^2 - T(n,k))/ A002674(n+1). We find p_0(x) in A000290, p_1(x) in A002415, p_2(x) essentially in A040977, p_3(x) in A053347 and p_4(x) in A054334. - Paul Curtz, Jun 10 2011

Crossrefs

Programs

Formula

T(n,k) = (A002262(n,k))^2.
G.f.: x*y*(1 + x*y)/((1 - x)*(1 - x*y)^3). - Stefano Spezia, Feb 21 2024

Extensions

Definition simplified by R. J. Mathar, Sep 07 2009
Previous Showing 21-30 of 36 results. Next