cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A086926 Product of Fibonacci and (shifted) triangular numbers.

Original entry on oeis.org

0, 0, 1, 6, 18, 50, 120, 273, 588, 1224, 2475, 4895, 9504, 18174, 34307, 64050, 118440, 217192, 395352, 714951, 1285350, 2298660, 4091241, 7250221, 12797568, 22507500, 39452725, 68942718, 120132558, 208776974, 361937400, 626015085, 1080441264
Offset: 0

Views

Author

James FitzSimons (cherry(AT)getnet.net), Sep 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Fibonacci[#] PolygonalNumber[# - 1] &, 33, 0] (* or *)
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 1, 6, 18, 50}, 33] (* or *)
    CoefficientList[Series[x^2*(1 + 3 x + x^3)/(1 - x - x^2)^3, {x, 0, 32}], x] (* Michael De Vlieger, Dec 17 2017 *)
  • MuPAD
    numlib::fibonacci(n)*binomial(n,2) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + 3*x + x^3) / (1 - x - x^2)^3 + O(x^40))) \\ Colin Barker, Sep 20 2017

Formula

From Franklin T. Adams-Watters, Feb 03 2006: (Start)
a(n) = A000045(n)*A000217(n-1) = A000045(n)*n*(n-1)/2.
a(n) = (n/(n-2)*a(n-1) + n*(n-1))/((n-2)*(n-3))*a(n-2).
G.f.: x^2*(1+3x+x^3)/(1-x-x^2)^3. (End)
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} i * C(n-k-1,k). - Wesley Ivan Hurt, Sep 19 2017
From Colin Barker, Sep 20 2017: (Start)
a(n) = ((-1)*(2^(-1-n)*((1-sqrt(5))^n - (1+sqrt(5))^n)*(-1+n)*n)) / sqrt(5).
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6) for n>5. (End)
a(n) = A001629(n-2)+3*A001629(n-3)+A001629(n-5). - R. J. Mathar, May 16 2025

Extensions

Definition and more terms from Franklin T. Adams-Watters, Feb 03 2006

A259546 a(n) = n^3*Fibonacci(n).

Original entry on oeis.org

0, 1, 8, 54, 192, 625, 1728, 4459, 10752, 24786, 55000, 118459, 248832, 511901, 1034488, 2058750, 4042752, 7846061, 15069888, 28677479, 54120000, 101370906, 188586728, 348669719, 640991232, 1172265625, 2133603368, 3866095494, 6976587072, 12541531081
Offset: 0

Views

Author

Colin Barker, Jun 30 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n^3*(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 30 2015
  • Mathematica
    Array[#^3*Fibonacci[#] &, 50, 0] (* Paolo Xausa, Jul 15 2024 *)
  • PARI
    a(n) = n^3*fibonacci(n)
    
  • PARI
    concat(0, Vec(x*(x^2+1)*(x^4-4*x^3+23*x^2+4*x+1)/(x^2+x-1)^4 + O(x^50)))

Formula

G.f.: x*(x^2+1)*(x^4-4*x^3+23*x^2+4*x+1) / (x^2+x-1)^4.
Sum_{k=1..n} a(k) = (n^3-6*n^2+24*n-50)*A000045(n+1) + ((n+1)^3-6*(n+1)^2+24*(n+1)-50)*A000045(n) + 50. - Prabha Sivaramannair, Jul 15 2024
E.g.f.: exp(x/2)*x*(5*(1 + x)*(1 + 2*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(1 + x*(9 + 4*x))*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Aug 25 2024

A259547 a(n) = n^4*Fibonacci(n).

Original entry on oeis.org

0, 1, 16, 162, 768, 3125, 10368, 31213, 86016, 223074, 550000, 1303049, 2985984, 6654713, 14482832, 30881250, 64684032, 133383037, 271257984, 544872101, 1082400000, 2128789026, 4148908016, 8019403537, 15383789568, 29306640625, 55473687568, 104384578338
Offset: 0

Views

Author

Colin Barker, Jun 30 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n^4*(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 30 2015
  • Mathematica
    Table[n^4 Fibonacci[n],{n,0,30}] (* or *) LinearRecurrence[{5,-5,-10,15,11,-15,-10,5,5,1},{0,1,16,162,768,3125,10368,31213,86016,223074},30] (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    a(n) = n^4*fibonacci(n)
    
  • PARI
    concat(0, Vec(-x*(x^8 -11*x^7 +87*x^6 -48*x^5 +240*x^4 +48*x^3 +87*x^2 +11*x +1)/(x^2 +x -1)^5 + O(x^50)))

Formula

G.f.: -x*(x^8-11*x^7+87*x^6-48*x^5+240*x^4+48*x^3+87*x^2+11*x+1) / (x^2+x-1)^5.
E.g.f.: exp(x/2)*x*(5*(1 + 7*x + 12*x^2 + 3*x^3)*cosh(sqrt(5)*x/2) + sqrt(5)*(1 + 21*x + 24*x^2 + 7*x^3)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Aug 25 2024

A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).

Original entry on oeis.org

1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Fibonacci polynomials.
Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

Crossrefs

Programs

  • Magma
    [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
  • PARI
    concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
    

A104731 Triangle T(n,k) = sum_{j=k..n} (j+1)*binomial(k,j-k), read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 5, 11, 4, 1, 5, 16, 19, 5, 1, 5, 16, 37, 29, 6, 1, 5, 16, 44, 71, 41, 7, 1, 5, 16, 44, 103, 121, 55, 8, 1, 5, 16, 44, 112, 211, 190, 71, 9, 1, 5, 16, 44, 112, 261, 390, 281, 89, 10, 1, 5, 16, 44, 112, 272, 555, 666, 397, 109, 11
Offset: 0

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Examples

			The first few rows of the triangle are:
1;
1, 2;
1, 5, 3;
1, 5, 11, 4
1, 5, 16, 19, 5;
1, 5, 16, 37, 29, 6;
...
		

Crossrefs

Cf. A014286 (row sums), A045925, A026729.

Formula

Product of the triangles A(n,k) = k+1 and B = binomial(k,n-k) = [1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 1, 3, 1;...], the triangular view of A026729.

A113684 Expansion of x(1-x^2-x^3)/((1-x)(1-x-x^2))^2.

Original entry on oeis.org

0, 1, 4, 11, 25, 52, 102, 193, 356, 645, 1153, 2040, 3580, 6241, 10820, 18671, 32089, 54956, 93826, 159745, 271300, 459721, 777409, 1312176, 2211000, 3719617, 6248452, 10482323, 17562841, 29391460, 49132638, 82048705, 136884260
Offset: 0

Views

Author

Paul Barry, Nov 05 2005

Keywords

Crossrefs

Formula

a(n)=4a(n-1)-4a(n-2)-2a(n-3)+4a(n-4)-a(n-6); a(n)=sum{k=0..n, (n-k)*C(n-k, k+1)}; a(n)=n*(F(n+2)-1)-(1+((n-5)*F(n-1)+(3n-8)*F(n))/5).

A137392 (10-n) * Fibonacci(n).

Original entry on oeis.org

9, 8, 14, 18, 25, 32, 39, 42, 34, 0, -89, -288, -699, -1508, -3050, -5922, -11179, -20672, -37629, -67650, -120406, -212532, -372541, -649152, -1125375, -1942288, -3339106, -5720598, -9770351, -16640800, -28271649
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Apr 10 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(10-n)Fibonacci[n],{n,40}] (* or *) LinearRecurrence[{2,1,-2,-1},{9,8,14,18},40] (* Harvey P. Dale, Sep 05 2022 *)
  • PARI
    a(n)=(10-n)*fibonacci(n)

Formula

G.f.: x*(-11*x^2 - 10*x + 9) / (x^2+x-1)^2. - Colin Barker, Jan 01 2013

Extensions

Edited by Ralf Stephan, Dec 24 2013

A317450 a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).

Original entry on oeis.org

1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Pell polynomials.
Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1.

Crossrefs

Programs

  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&,15]
Previous Showing 21-28 of 28 results.