A351980
Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1
The terms together with their prime indices begin:
1: ()
6: (2,1)
84: (4,2,1,1)
126: (4,2,2,1)
140: (4,3,1,1)
210: (4,3,2,1)
490: (4,4,3,1)
525: (4,3,3,2)
686: (4,4,4,1)
875: (4,3,3,3)
1404: (6,2,2,2,1,1)
1456: (6,4,1,1,1,1)
2106: (6,2,2,2,2,1)
2184: (6,4,2,1,1,1)
2288: (6,5,1,1,1,1)
2340: (6,3,2,2,1,1)
There are two other possible double-pairings of statistics:
These partitions are counted by
A351981.
Partitions with as many even as odd parts:
- strict conjugate case counted by
A352129
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by
A277103.
A350945: # of even parts = # of even conjugate parts, counted by
A350948.
Cf.
A026424,
A028260,
A098123,
A130780,
A171966,
A241638,
A325700,
A350841,
A350849,
A350941,
A350942,
A350950,
A350951.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[1000],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&&Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]
A351981
Number of integer partitions of n with as many even parts as odd conjugate parts, and as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 2, 2, 4, 2, 1, 6, 8, 7, 9, 13, 14, 15, 19, 21, 23, 32, 40, 41, 45, 66, 81, 80, 96, 124, 139, 160, 194, 221, 246, 303, 360, 390, 446, 546, 634, 703, 810, 971, 1115, 1250, 1448, 1685, 1910
Offset: 0
The a(n) partitions for selected n:
n = 3 9 15 18 19 20 21
-----------------------------------------------------------
21 4221 622221 633222 633322 644321 643332
4311 632211 643221 643321 653321 654321
642111 643311 644221 654221 665211
651111 644211 644311 654311 82222221
653211 653221 82222211 83222211
663111 653311 84221111 84222111
654211 86111111 85221111
664111 86211111
87111111
For example, the partition (6,6,3,1,1,1) has conjugate (6,3,3,2,2,2), and has 2 even, 4 odd, 4 even conjugate, and 2 odd conjugate parts, so is counted under a(18).
These partitions are ranked by
A351980.
There are four statistics:
There are four other pairings of statistics:
-
A045931: # of even parts = # of odd parts:
-
A277103: # of odd parts = # of odd conjugate parts, ranked by
A350944.
-
A350948: # of even parts = # of even conjugate parts, ranked by
A350945.
There are two other double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?OddQ]&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A108949
Number of partitions of n with more even parts than odd parts.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 3, 3, 6, 7, 10, 14, 19, 26, 33, 45, 58, 77, 97, 127, 161, 205, 259, 326, 411, 510, 639, 786, 980, 1197, 1482, 1800, 2216, 2677, 3275, 3942, 4793, 5749, 6951, 8309, 9995, 11912, 14259, 16944, 20194, 23926, 28402, 33559, 39687, 46767, 55120, 64780, 76110, 89222
Offset: 0
a(6) = 3: {[6], [4,2], [2,2,2]}; a(7) = 3: {[4,2,1], [3,2,2], [2,2,2,1]}.
Cf.
A045931 for #even parts = #odd parts,
A108950 for #even parts < #odd parts.
-
with(combinat,partition):
evnbigrodd:=proc(n::nonnegint)
local evencount,oddcount,bigcount,parts,i,j;
bigcount:=0;
partitions:=partition(n);
for i from 1 to nops(partitions) do
evencount:=0;
oddcount:=0;
for j from 1 to nops(partitions[i]) do
if (op(j,partitions[i]) mod 2 <>0) then
oddcount:=oddcount+1
fi;
if (op(j,partitions[i]) mod 2 =0) then
evencount:=evencount+1
fi
od;
if (evencount>oddcount) then
bigcount:=bigcount+1
fi
od;
return(bigcount)
end proc;
seq(evnbigrodd(i),i=1..42);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t<0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Mar 30 2014
-
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, ?OddQ] == Count[#, ?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 0, 30}] (* A045931 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t<0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
-
a(n) = {nb = 0; forpart(p=n, nb += (2*#(select(x->x%2, Vec(p))) < #p);); nb;} \\ Michel Marcus, Nov 02 2015
A349158
Heinz numbers of integer partitions with exactly one odd part.
Original entry on oeis.org
2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1
The terms and corresponding partitions begin:
2: (1) 42: (4,2,1) 86: (14,1)
5: (3) 45: (3,2,2) 93: (11,2)
6: (2,1) 47: (15) 95: (8,3)
11: (5) 51: (7,2) 97: (25)
14: (4,1) 54: (2,2,2,1) 98: (4,4,1)
15: (3,2) 58: (10,1) 99: (5,2,2)
17: (7) 59: (17) 103: (27)
18: (2,2,1) 65: (6,3) 105: (4,3,2)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 69: (9,2) 109: (29)
31: (11) 73: (21) 114: (8,2,1)
33: (5,2) 74: (12,1) 119: (7,4)
35: (4,3) 77: (5,4) 122: (18,1)
38: (8,1) 78: (6,2,1) 123: (13,2)
41: (13) 83: (23) 126: (4,2,2,1)
These partitions are counted by
A000070 up to 0's.
These are the positions of 1's in
A257991.
The even prime indices are counted by
A257992.
The conjugate partitions are ranked by
A345958.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000700,
A001222,
A027187,
A027193,
A028260,
A031368 (primes with odd index),
A035363,
A215366,
A277579,
A300063,
A349151.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?OddQ]==1&]
A352488
Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1
The terms together with their prime indices begin:
1: ()
2: (1)
4: (1,1)
6: (2,1)
8: (1,1,1)
9: (2,2)
12: (2,1,1)
16: (1,1,1,1)
18: (2,2,1)
20: (3,1,1)
24: (2,1,1,1)
27: (2,2,2)
30: (3,2,1)
32: (1,1,1,1,1)
36: (2,2,1,1)
40: (3,1,1,1)
48: (2,1,1,1,1)
50: (3,3,1)
54: (2,2,2,1)
56: (4,1,1,1)
These partitions are counted by
A046682.
These are the positions of nonnegative terms in
A352491.
A008292 is the triangle of Eulerian numbers (version without zeros).
A352525 counts compositions by weak superdiagonals, rank statistic
A352517.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]
A108950
Number of partitions of n with more odd parts than even parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 9, 14, 18, 27, 35, 49, 64, 86, 113, 148, 192, 247, 319, 404, 517, 649, 822, 1024, 1285, 1590, 1979, 2436, 3007, 3682, 4515, 5501, 6703, 8131, 9851, 11899, 14344, 17252, 20703, 24804, 29640, 35377, 42115, 50085, 59415, 70420, 83261, 98365, 115947, 136557
Offset: 1
a(4) = 3: {[3,1], [2,1,1], [1,1,1,1]}; a(5) = 4: {[5], [3,1,1], [2,1,1,1], [1,1,1,1,1]}.
Cf.
A045931 for #even parts = #odd parts,
A108949 for #even parts > #odd parts.
-
with(combinat,partition):oddbigrevn:=proc(n::nonnegint) local evencount,oddcount,bigcount,parts,i,j; printlevel:=-1;bigcount:=0; partitions:=partition(n);for i from 1 to nops(partitions) do evencount:=0; oddcount:=0;for j from 1 to nops(partitions[i]) do if (op(j,partitions[i]) mod 2 <>0) then oddcount:=oddcount+1 fi; if (op(j,partitions[i]) mod 2 =0) then evencount:=evencount+1 fi od; if (evencount0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..80); # Alois P. Heinz, Mar 30 2014
-
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, ?OddQ] > Count[#, ?EvenQ] &]; t = Table[p[n], {n, 0, 15}] (* partitions of n with # odd parts > # even parts *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 1, 30}] (* A108950 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
A300788
Number of strict integer partitions of n in which the even parts appear as often at even positions as at odd positions.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 23, 26, 30, 35, 42, 47, 54, 62, 73, 82, 94, 107, 124, 139, 158, 179, 206, 230, 260, 293, 334, 372, 420, 470, 532, 591, 664, 740, 835, 924, 1034, 1148, 1288, 1422, 1588, 1756, 1962, 2161, 2404
Offset: 0
The a(9) = 3 strict partitions: (9), (621), (531). Missing are: (81), (72), (63), (54), (432).
Cf.
A000712,
A000898,
A001405,
A026010,
A045931,
A063886,
A097613,
A130780,
A171966,
A239241,
A300787,
A300789.
-
cobal[y_]:=Sum[(-1)^x,{x,Join@@Position[y,_?EvenQ]}];
Table[Length[Select[IntegerPartitions[n],cobal[#]===0&&UnsameQ@@#&]],{n,0,40}]
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A019507
Droll numbers: numbers > 1 whose sum of even prime factors equals the sum of odd prime factors.
Original entry on oeis.org
72, 240, 672, 800, 2240, 4224, 5184, 6272, 9984, 14080, 17280, 33280, 39424, 48384, 52224, 57600, 93184, 116736, 161280, 174080, 192000, 247808, 304128, 373248, 389120, 451584, 487424, 537600, 565248, 585728, 640000, 718848, 1013760, 1089536, 1244160, 1384448
Offset: 1
Mario Velucchi (mathchess(AT)velucchi.it)
6272 = 2*2*2*2*2*2*2*7*7 is droll since 2+2+2+2+2+2+2 = 14 = 7+7.
For count instead of sum we have
A072978.
Partitions of this type are counted by
A239261, without zero terms
A249914.
For prime indices instead of factors we have
A366748, zeros of
A366749.
-
f:= proc(k, m) # numbers whose sum of prime factors >= m is k; m is prime
local S,p,j;
option remember;
if k = 0 then return [1]
elif m > k then return []
fi;
S:= NULL:
p:= nextprime(m);
for j from k by -m to 0 do
S:= S, op(map(`*`, procname(j,p) , m^((k-j)/m)))
od;
[S]
end proc:
g:= proc(N) local m,R;
R:= NULL;
for m from 1 while 2^m < N do
R:= R, op(map(`*`,select(`<=`,f(2*m,3), N/2^m),2^m));
od;
sort([R])
end proc:
g(10^8); # Robert Israel, Feb 20 2025
-
Select[Range[2, 2*10^6, 2], First[#] == Total[Rest[#]] & [Times @@@ FactorInteger[#]] &] (* Paolo Xausa, Feb 19 2025 *)
-
isok(n) = {if (n % 2, return (0)); f = factor(n); return (2*f[1,2] == sum(i=2, #f~, f[i,1]*f[i,2]));} \\ Michel Marcus, Jun 21 2013
A171967
Number of partitions of n with distinct numbers of odd and even parts.
Original entry on oeis.org
0, 1, 2, 2, 5, 5, 10, 12, 20, 25, 37, 49, 68, 90, 119, 158, 206, 269, 344, 446, 565, 722, 908, 1148, 1435, 1795, 2229, 2765, 3416, 4204, 5164, 6315, 7717, 9380, 11406, 13793, 16692, 20093, 24203, 29012, 34799, 41552, 49636, 59059, 70279, 83341, 98822
Offset: 0
-
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t<>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Mar 30 2014
-
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t != 0, 1, 0], If[i < 1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
Comments