cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A351680 Discriminants of imaginary quadratic fields with class number 42 (negated).

Original entry on oeis.org

1959, 2183, 2911, 3039, 3176, 3687, 3831, 4039, 4103, 4184, 4735, 4904, 4952, 5288, 5935, 5959, 6179, 6452, 6487, 6611, 6623, 6632, 6836, 7447, 7604, 7811, 7892, 7988, 8459, 8552, 8579, 8744, 8852, 9368, 9428, 9607, 10231, 10643, 10772, 10996, 11023, 11099
Offset: 1

Views

Author

Andy Huchala, Mar 28 2022

Keywords

Comments

Sequence contains 339 terms; largest is 280267.
The class group of Q[sqrt(-d)] is isomorphic to C_42 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 42]

A046016 Discriminants of imaginary quadratic fields with class number 19 (negated).

Original entry on oeis.org

311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463, 3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803, 8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363, 16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211, 21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707
Offset: 1

Views

Author

Keywords

Comments

47 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[ n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 19, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A046005 Discriminants of imaginary quadratic fields with class number 8 (negated).

Original entry on oeis.org

95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204
Offset: 1

Views

Author

Keywords

Comments

131 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019

A046012 Discriminants of imaginary quadratic fields with class number 15 (negated).

Original entry on oeis.org

239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647, 2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323, 5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547, 8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651
Offset: 1

Views

Author

Keywords

Comments

68 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 12000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 15, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A081319 Smallest squarefree integer k such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

1, 5, 23, 14, 47, 26, 71, 41, 199, 74, 167, 89, 191, 101, 239, 146, 383, 293, 311, 194, 431, 269, 647, 329, 479, 314, 983, 341, 887, 461, 719, 446, 839, 614, 1031, 626, 1487, 1199, 1439, 689, 1151, 794, 1847, 854, 1319, 941, 3023, 1106, 1511, 1109, 1559
Offset: 1

Views

Author

Dean Hickerson, Mar 18 2003

Keywords

Examples

			From _Jianing Song_, May 08 2021: (Start)
a(6) = min{A060649(6), A344072(3)/4} = min{87, 104/4} = 26.
a(12) = min{A060649(12), A344072(6)/4} = min{231, 356/4} = 89.
a(18) = min{A060649(12), A344072(9)/4} = min{335, 1172/4} = 293.
a(38) = min{A060649(38), A344072(19)/4} = min{1199, 4916/4} = 1199. (End)
		

Crossrefs

Programs

Formula

a(n) = A060649(n) for odd n > 1. For even n, assuming that A060649(n) > 0 and A344072(n/2) > 0, a(n) = min{A060649(n), A344072(n/2)/4}. - Jianing Song, May 08 2021

Extensions

Edited by Max Alekseyev, Apr 28 2010
Escape clause added by Jianing Song, May 08 2021

A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).

Original entry on oeis.org

167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11};
    for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # G. C. Greubel, Mar 01 2019

Extensions

a(40)-a(41) from Giovanni Resta, Mar 20 2013

A046010 Discriminants of imaginary quadratic fields with class number 13 (negated).

Original entry on oeis.org

191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 21000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 13, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A046014 Discriminants of imaginary quadratic fields with class number 17 (negated).

Original entry on oeis.org

383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123
Offset: 1

Views

Author

Keywords

Comments

45 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 17, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A048925 Discriminants of imaginary quadratic fields with class number 24 (negated).

Original entry on oeis.org

695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 24, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(),QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 24] # Andy Huchala, Feb 15 2022

A046003 Discriminants of imaginary quadratic fields with class number 6 (negated).

Original entry on oeis.org

87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[3800], NumberFieldClassNumber[Sqrt[-#]] == 6 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 6};
    for(n=1, 4000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==6] # G. C. Greubel, Mar 01 2019

Extensions

More terms from Seiichi Manyama, Jun 03 2018
Previous Showing 11-20 of 43 results. Next