cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A386308 Long legs of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2) ordered by increasing hypotenuse (A386307), where u and v are positive integers.

Original entry on oeis.org

12, 20, 24, 28, 36, 40, 45, 44, 48, 52, 60, 56, 60, 72, 72, 68, 75, 63, 84, 76, 80, 90, 84, 88, 105, 92, 105, 96, 120, 120, 104, 120, 108, 112, 132, 105, 116, 120, 144, 124, 144, 135, 132, 156, 136, 150, 126, 140, 168, 168, 180, 148, 175, 165, 152, 156, 168, 180
Offset: 1

Views

Author

Felix Huber, Aug 19 2025

Keywords

Comments

In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2 is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg.

Examples

			The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 12 is a term.
		

Crossrefs

Subsequence of A046084.

Programs

  • Maple
    A386308:=proc(N) # To get all terms with hypotenuses <= N
        local i,l,m,u,v,r,x,y,z;
        l:={};
        m:={};
        for u from 2 to floor(sqrt(N-1)) do
            for v to min(u-1,floor(sqrt(N-u^2))) do
                x:=min(2*u*v,u^2-v^2);
                y:=max(2*u*v,u^2-v^2);
                z:=u^2+v^2;
                m:=m union {[z,y,x]};
                if gcd(u,v)=1 and is(u-v,odd) then
                    l:=l union {seq([i*z,i*y,i*x],i=1..N/z)}
                fi
            od
        od;
        r:=l minus m;
        return seq(r[i,2],i=1..nops(r));
    end proc;
    A386308(1000);

Formula

a(n) = sqrt(A386307(n)^2 - A386309(n)^2).
{A046084(n)} = {a(n)} union {A046087(n)} union {A386944(n)}.

A386944 Long legs of Pythagorean triples of the form (u^2 - v^2, 2*u*v, u^2 + v^2), ordered by increasing hypotenuse (A386943).

Original entry on oeis.org

8, 16, 24, 30, 32, 36, 48, 48, 42, 60, 70, 64, 80, 72, 96, 96, 90, 84, 108, 120, 100, 112, 126, 120, 110, 140, 135, 128, 160, 154, 168, 160, 144, 144, 192, 198, 192, 180, 182, 216, 224, 168, 216, 240, 196, 200, 234, 224, 252, 189, 240, 210, 286, 288, 220, 280, 280
Offset: 1

Views

Author

Felix Huber, Aug 24 2025

Keywords

Comments

In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2 is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg.

Examples

			The nonprimitive Pythagorean triple (6, 8, 10) is of the form (u^2 - v^2, 2*u*v, u^2 + v^2): From u = 3 and v = 1 follows u^2 - v^2 = 8 (long leg), 2*u*v = 6 (short leg), u^2 - v^2 = 10 (hypotenuse). Therefore, 8 is a term.
		

Crossrefs

Programs

  • Maple
    A386944:=proc(N) # To get all hypotenuses <= N
        local i,l,u,v;
        l:=[];
        for u from 2 to floor(sqrt(N-1)) do
            for v to min(u-1,floor(sqrt(N-u^2))) do
                if gcd(u,v)>1 or is(u-v,even) then
                    l:=[op(l),[u^2+v^2,max(2*u*v,u^2-v^2),min(2*u*v,u^2-v^2)]]
                fi
            od
        od;
        l:=sort(l);
        return seq(l[i,2],i=1..nops(l));
    end proc;
    A386944(296);

Formula

a(n) = sqrt(A386943(n)^2 - A386945(n)^2).
{A046084(n)} = {a(n)} union {A046087(n)} union {A386308(n)}.

A108707 Minimum side in Pythagorean triangles with hypotenuse of n.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 0, 5, 0, 9, 0, 8, 0, 0, 12, 0, 0, 0, 0, 7, 10, 0, 0, 20, 18, 0, 0, 0, 16, 21, 0, 12, 0, 15, 24, 9, 0, 0, 0, 27, 0, 0, 0, 0, 14, 24, 20, 28, 0, 33, 0, 0, 40, 0, 36, 11, 0, 0, 0, 16, 0, 0, 32, 0, 42, 0, 0, 48, 24, 21, 0, 0, 30, 0, 48, 0, 18, 0, 0, 13, 0, 60, 0, 39, 54
Offset: 1

Views

Author

Sébastien Dumortier, Jun 20 2005

Keywords

Examples

			a(5) = 3 as the right triangle with sides (3, 4, 5) has hypotenuse n = 5 smallest side a(5) = 3. This is the smallest side a right triangle with integer sides and hypotenuse 5 can have. - _David A. Corneth_, Apr 10 2021
		

Crossrefs

A046080 gives the number of Pythagorean triangles with hypotenuse n.

Programs

  • Mathematica
    f[n_]:=Block[{k=n-1,m=Sqrt[n/2],a},While[k>m&&!IntegerQ[(a=Sqrt[n^2-k^2])],k--];If[k<=m,0,a]];Table[f[n],{n,90}]
  • PARI
    first(n) = {my(lh = List(), res = vector(n, i, oo)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = vecmin([res[i*(u^2+v^2)], i*(u^2 - v^2), i*2*u*v]))))); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000

Extensions

Extended by Ray Chandler, Dec 20 2011

A108708 Maximum side length in Pythagorean triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 12, 0, 12, 0, 15, 0, 0, 16, 0, 0, 0, 0, 24, 24, 0, 0, 21, 24, 0, 0, 0, 30, 28, 0, 35, 0, 36, 32, 40, 0, 0, 0, 36, 0, 0, 0, 0, 48, 45, 48, 45, 0, 44, 0, 0, 42, 0, 48, 60, 0, 0, 0, 63, 0, 0, 60, 0, 56, 0, 0, 55, 70, 72, 0, 0, 72, 0, 64, 0, 80, 0, 0, 84, 0, 63, 0
Offset: 1

Views

Author

Sébastien Dumortier, Jun 20 2005

Keywords

Examples

			a(5) is 4 as the maximum side (other than the hypotenuse) a right triangle with integer sides and hypotenuse 5 can have.
		

Crossrefs

A046080 gives the number of Pythagorean triangles with hypotenuse n.

Programs

  • Mathematica
    f[n_] := Block[{k = n - 1, m = Sqrt[n/2]}, While[k > m && !IntegerQ[Sqrt[n^2 - k^2]], k-- ]; If[k <= m, 0, k]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Jun 21 2005 *)
  • PARI
    first(n) = {my(lh = List(), res = vector(n)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = max(res[i*(u^2+v^2)], max(i*(u^2 - v^2), i*2*u*v)); ); ); ); ); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000

Extensions

More terms from Robert G. Wilson v, Jun 21 2005

A088896 Length of longest integral ladder that can be moved horizontally around the right angled corner where two hallway corridors of integral widths meet.

Original entry on oeis.org

125, 1000, 2197, 3375, 4913, 8000, 15625, 17576, 24389, 27000, 39304, 42875, 50653, 59319, 64000, 68921, 91125, 125000, 132651, 140608, 148877, 166375, 195112, 216000, 226981, 274625, 314432, 343000, 389017, 405224, 421875, 474552, 512000
Offset: 1

Views

Author

Lekraj Beedassy, Nov 28 2003

Keywords

Comments

The set of values for the integral-widths corridors and longest ladder are merely the cubes of Pythagorean triples, viz. (A046083, A046084, A009000).
The corridors' widths may be parametrically expressed as d*(sin x)^3 and d*(cos x)^3, for a longest ladder length d making an angle x with one of the corridors.
A given ladder, however, is maximum-corner-bending for a family of infinite pairs of perpendicular corridor widths and that the envelope of the maximum bending positions is that of a sliding rod against the outer wall, which is a branch of an astroid or four-cusped hypocycloid.

References

  • E. Mendelson, 3000 Solved Problems in Calculus, Chapter 16 Problem 16.56 pp. 131, Mc Graw-Hill 1988.
  • M. Spiegel, Theory and Problems of Advanced Calculus, Chapter 4 Problem 40 pp. 75, Mc Graw-Hill 1974.

Formula

a(n)=d^3, where d=A009003(n).

A096472 Numbers containing squares of Pythagorean triples in their divisor set.

Original entry on oeis.org

3600, 7200, 10800, 14400, 18000, 21600, 25200, 28800, 32400, 36000, 39600, 43200, 46800, 50400, 54000, 57600, 61200, 64800, 68400, 72000, 75600, 79200, 82800, 86400, 90000, 93600, 97200, 100800, 104400, 108000, 111600, 115200, 118800, 122400, 126000, 129600, 133200
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2004

Keywords

Comments

a(n) = m * (A046083(k)*A046084(k)*A009000(k))^2 for appropriate, not necessarily unique m and k.

Examples

			5^2 + 12^2 = 13^2: 5^2, 12^2 and 13^2 are divisors of 608400 = (13*5*3*2^2)^2, therefore 608400 is a term.
		

Crossrefs

Cf. Pythagorean triples: A046083, A046084, A009000.

Programs

  • Mathematica
    Range[50]*3600 (* Paolo Xausa, Jul 01 2025 *)
  • PARI
    my(x='x+O('x^38)); Vec(3600*x/(1-x)^2) \\ Elmo R. Oliveira, Jun 30 2025

Formula

a(n) = n*60^2.
From Elmo R. Oliveira, Jun 30 2025: (Start)
G.f.: 3600*x/(1-x)^2.
E.g.f.: 3600*x*exp(x).
a(n) = 60*A169823(n) = 100*A044102(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

Name clarified by Tanya Khovanova, Jul 05 2021
More terms from Elmo R. Oliveira, Jun 30 2025

A342583 Numbers k such that prime(k) is the hypotenuse of a Pythagorean triple where one leg is also prime.

Original entry on oeis.org

3, 6, 18, 42, 82, 271, 284, 369, 445, 682, 1069, 1193, 1900, 2241, 3894, 6137, 7108, 8164, 9658, 10126, 12645, 14842, 14936, 17913, 18420, 19480, 23893, 24605, 28959, 32913, 36279, 40847, 43936, 44559, 45500
Offset: 1

Views

Author

Ivan N. Ianakiev, Mar 16 2021

Keywords

Comments

In such a triangle, the leg that is not prime is always the largest one and is equal to prime(k)-1; these even legs are in A067755. E.g. for a(2) = 6, prime(6) = 13 and the corresponding Pythagorean triple is (5, 12, 13). - Bernard Schott, Apr 03 2021

Examples

			a(1) = 3, since prime(3) = 5 is the hypotenuse of the triple (3,4,5).
		

Crossrefs

Cf. A067756 (the hypotenuses).

Programs

  • Maple
    R:= NULL: count:= 0:
    p:= 2:
    while count < 100 do
      p:= nextprime(p); n:= (p-1)/2; q:= 2*n^2+2*n+1;
      if isprime(q) then
        count:= count+1; r:= numtheory:-pi(q); R:= R, r;
      fi
    od:
    R; # Robert Israel, Mar 22 2021
  • Mathematica
    PrimePi[Take[Cases[Import["https://oeis.org/A067756/b067756.txt","Table"],{,}][[All,2]],100]]

A342858 a(n) is the least integer h such that there exists a Pythagorean triple (x, y, h) that satisfies f(x)+f(y)+f(h)=n where f(m)=A176774(m) is the smallest polygonality of m; a(n) = 0 if no such h exists.

Original entry on oeis.org

13530, 136, 35, 5, 4510, 10, 100, 45, 51, 1404
Offset: 9

Views

Author

Michel Marcus, Mar 26 2021

Keywords

Comments

a(19) > 10^9 if it exists.
It appears that the triples whose sum is 10 (as in the 2nd example below) have legs n^6 = A001014(n), (n^8 - n^4)/2 = A218131(n+1)/2 and (n^8 + n^4)/2 = A071231(n) for n >= 2; they consist of 2 triangular numbers and 1 square number. - Michel Marcus, Apr 12 2021

Examples

			a(9)  = 13530 with A176774([8778, 10296, 13530]) = [3,3,3].
a(10) = 136   with A176774([64, 120, 136])       = [4,3,3].
a(11) = 35    with A176774([21, 28, 35])         = [3,3,5].
a(12) = 5     with A176774([3, 4, 5])            = [3,4,5].
a(13) = 4510  with A176774([2926, 3432, 4510])   = [3,5,5].
a(14) = 10    with A176774([6, 8, 10])           = [3,8,3].
a(15) = 100   with A176774([28, 96, 100])        = [3,8,4].
a(16) = 45    with A176774([27, 36, 45])         = [10,3,3].
a(17) = 51    with A176774([45, 24, 51])         = [3,9,5].
a(18) = 1404  with A176774([540, 1296, 1404])    = [7,4,7].
		

Crossrefs

Cf. A213188 (see 2nd comment).

Programs

  • PARI
    tp(n) = if (n<3, [n], my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); v = Vec(v); v[#v]); \\ A176774
    vsum(v) = vecsum(apply(tp, v));
    lista(limp, lim) = {my(vr = vector(limp)); for(u = 2, sqrtint(lim), for(v = 1, u, if (u*u+v*v > lim, break); if ((gcd(u,v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u*u+v*v) > lim, break); my(w = [i*(u*u - v*v), i*2*u*v, i*(u*u+v*v)]); my(h = i*(u*u+v*v)); my(sw = vsum(w)); if (sw <= limp, if (vr[sw] == 0, vr[sw] = h, if (h < vr[sw], vr[sw] = h))););););); vector(#vr - 8, k, vr[k+8]);}
    lista(80, 15000) \\ Michel Marcus, Apr 16 2021

A235990 Consider all Pythagorean triples (X,Y,Z) consisting of refactorable numbers (A033950) only, ordered by increasing Z. This sequence gives the values of Z.

Original entry on oeis.org

104, 204, 348, 480, 488, 492, 600, 732, 936, 1248, 1356, 1360, 1440, 1448, 1644, 1788, 2000, 2172, 2196, 2700, 2784, 2824, 3060, 3084, 3228, 3360, 3368, 3372, 3552, 3712, 3744, 3816, 3924, 4080, 4240, 4392, 4500, 4500, 4812, 5052, 5088, 5220, 5280, 5856, 6000
Offset: 1

Views

Author

Ivan N. Ianakiev, Jan 18 2014

Keywords

Examples

			104^2 = 40^2 + 96^2, i.e. A033950(17)^2 = A033950(9)^2 + A033950(16)^2.
		

Crossrefs

Extensions

More terms from Michel Marcus, Jan 21 2014
Previous Showing 11-19 of 19 results.